首页> 外文期刊>Microbiology >The structure–function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain
【24h】

The structure–function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain

机译:WSPR,一种具有GGDEF输出域的假单胞菌荧光响应调节器的结构功能关系

获取原文
           

摘要

The GGDEF response regulator WspR couples the chemosensory Wsp pathway to the overproduction of acetylated cellulose and cell attachment in the Pseudomonas fluorescens SBW25 wrinkly spreader (WS) genotype. Here, it is shown that WspR is a diguanylate cyclase (DGC), and that DGC activity is elevated in the WS genotype compared to that in the ancestral smooth (SM) genotype. A structure–function analysis of 120 wspR mutant alleles was employed to gain insight into the regulation and activity of WspR. Firstly, 44 random and defined pentapeptide insertions were produced in WspR, and the effects determined using assays based on colony morphology, attachment to surfaces and cellulose production. The effects of mutations within WspR were interpreted using a homology model, based on the crystal structure of Caulobacter crescentus PleD. Mutational analyses indicated that WspR activation occurs as a result of disruption of the interdomain interface, leading to the release of effector-domain repression by the N-terminal receiver domain. Quantification of attachment and cellulose production raised significant questions concerning the mechanisms of WspR function. The conserved RYGGEEF motif of WspR was also subjected to mutational analysis, and 76 single amino acid residue substitutions were tested for their effects on WspR function. The RYGGEEF motif of WspR is functionally conserved, with almost every mutation abolishing function.
机译:GGDEF响应调节器WSPR将化学感应型WSP途径致其对乙酰化纤维素的过量生产和在荧光荧光型SBW25碎片蔓延(WS)基因型中的过量生产。这里,显示WSPR是Diguantyly酸盐环化酶(DGC),与祖先平滑(SM)基因型中的相比之下,DGC活性在WS基因型中升高。使用120WSPR突变等位基因的结构函数分析,以了解WSPR的调控和活性。首先,在WSPR中产生44种随机和定义的五肽插入,并且使用基于菌落形态的测定法确定的效果,与表面和纤维素产生。使用同源性模型来解释WSPR在WSPR内的突变效应,基于Pailobacter Crenceus的晶体结构来解释。突变分析表明,由于跨域接口的破坏,发生WSPR激活,导致N终端接收器域的执行器域抑制释放。附着和纤维素产生的量化提出了关于WSPR功能机制的重要问题。 WSPR的保守的Ryggef基序也进行了突变分析,并测试了76个单氨基酸残基取代,用于对WSPR功能的影响。 WSPR的Ryggef主题在功能上保守,几乎每个突变都取消了函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号