首页> 外文期刊>Microbiology >Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity
【24h】

Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity

机译:烃单氧化酶的诱变表明亚单次-C中的金属中心,而不是亚单级-B,对于含铜膜单氧化酶活性是必需的

获取原文
           

摘要

The hydrocarbon monooxygenase (HMO) of Mycobacterium NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a ‘variable-metal’ site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81?%. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.
机译:Cycobacterium NBB4的烃单氧基酶(HMO)是含铜膜单氧基酶(延长型)超家族的成员,其还含有颗粒状甲烷单氧基酶(PMMOS)和氨单氧基酶(AMOS)。由于能够催化困难的环境和工业相关性困难的衬底的氧化能力,凯明斯具有广泛的应用。我们对Cummo Biochemisty的大多数理解是基于PMMOS和AMOS作为模型。所有三种可用的结构都来自PMMOS。这些共享两个金属位点:由亚基-B中的组氨酸残基协调的双泊孔中心和由亚单次-C的羧酸盐和组氨酸残基协调的“可变金属”位点。这些网站的确切性质和作用得到了很大的争论。进展的显着障碍是甲蛋白和自养氨氧化剂的生理学专业性质,缺乏用于任一酶的重组表达系统和临时活性蛋白质的难题。在这项研究中,我们使用新开发的HMO模型系统在NBB4 HMO的HMOB和HMOC中预测的金属结合残基进行现场导向的诱变。预测HMOC金属中心配体的所有突变消除了酶活性。预测的HMOB(B-H155V)的预测铜结合残余物的突变将活性降低81%。显示出在生理学定义的Cummos亚组内的突变的突变显示为使相对HMO活性降低较大的烷烃。该研究表明,亚单位-B的模型Dicopper位点不足以用于HMO活性,并且预测由亚基-C残基协调的金属中心对于活性至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号