首页> 外文期刊>Materials >A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals
【24h】

A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals

机译:一种多尺度计算模型,将单晶可塑性本构模型与金属多晶体(GMC)的广义方法相结合

获取原文
           

摘要

A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e. , each individual grain. Two–three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities.
机译:开发了多尺度计算模型,用于通过采用可以采用单晶可塑性本构模型来确定多晶金属的弹性塑性行为,该模型可以在有限元分析(FEA)框架上捕获微结构尺度应力场。细胞(GMC)微机械模型的广义方法用于均匀化局部场数量。首先,施加单独的GMC用于研究在单轴负载条件下施加诸如含有单颗粒或两粒颗粒的重复材料细胞(RUC)的简单材料微观结构。为了验证,将通过单独的GMC获得的结果与来自包含相同单晶塑性本构模型的类似FEA模型的结果进行比较。然后将该验证扩展到包含数十颗粒的样本。结果表明,GMC均质化与晶体塑性组成型框架相结合的是结构失效分析的有希望的方法,因为它允许在平均意义上适当地预测整个RUC中的von沉积的von,以及局部微观结构水平,即每个单独的谷物。用GMC获得两三个在计算成本中节省的计算成本,特别是在预测中的一定准确性,特别是在预测局部张力场数量的成分和晶界附近的数量。最后,通过成功地分析发动机盘组件并确定场批量的微结构尺度细节,证明了开发的多尺度模型来解决现实寿命尺寸结构的多尺度模型来解决现实寿命尺寸结构的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号