...
首页> 外文期刊>Frontiers in Plant Science >Energy Coupling in Cation-Pumping Pyrophosphatase—Back to Mitchell
【24h】

Energy Coupling in Cation-Pumping Pyrophosphatase—Back to Mitchell

机译:阳离子磷酸磷酸酶 - 返回米切尔的能量耦合

获取原文
           

摘要

“Scientists frequently debate theories”. Douglas Allchin Introduction Those of a certain age may remember (and their younger colleagues can read) accounts of the vivid debate in the 1970s surrounding the coupling mechanism involved in oxidative and photo phosphorylation. By that time, Mitchell's chemiosmotic hypothesis had already gained credence, and the debated issue was how a transmembrane H ~(+) potential difference drives ATP synthesis by F-type ATP synthases. The major mechanisms that were considered assumed that the membrane (F _(o)) and peripheral (F _(1)) parts were functionally connected in different ways. Peter Mitchell proposed a “direct coupling” mechanism in which protons are translocated through F _(o) into the catalytic site of F _(1), where they participate directly in ADP phosphorylation and form water as the second product ( Mitchell, 1974 ). Paul Boyer, the proponent of the main competing mechanism, advocated an “indirect coupling” mechanism (successively termed “alternating site”, “binding change”, or “rotational”) that implied that protons transfer their energy to the catalytic site indirectly, via distant conformational strain ( Boyer, 1997 ). The debate was resolved in favor of Boyer's mechanism when it became clear that the alternative mechanism is inconsistent with H ~(+)/ATP stoichiometry and, finally, when the three-dimensional structure of the F-ATPase was determined ( Abrahams et?al., 1994 ). Now, after several decades, the problem of energy coupling is being revisited in connection with membrane pyrophosphatases (mPPases), ancient transporters that couple H ~(+) and Na ~(+) transport across biological membranes in plant vacuoles and bacteria to pyrophosphate hydrolysis. mPPases are functional analogs of F-type ATPases and similarly catalyze a direct attack of a water molecule on a phosphorus atom without formation of a phosphorylated intermediate. However, mPPases have a much simpler structure; each of the two identical subunits of mPPase consists of 15?17 transmembrane α-helices, and six of them form the catalytic site on the cytosolic side. H ~(+)-transporting mPPases (H ~(+)-PPases) have been known since 1966 ( Baltscheffsky et?al., 1966 ; Serrano et?al., 2007 ) and are recognized as contributors to plant stress resistance ( Yang et?al., 2014 ). More recent studies have identified an evolutionarily related prokaryotic Na ~(+)-transporting mPPase lineage (Na ~(+)-PPases) that can pump both H ~(+) and Na ~(+) ( Malinen et?al., 2007 ; Luoto et?al., 2013a ; Luoto et?al., 2013b ). mPPase studies have been further boosted by publication in 2012 of the three-dimensional structures of the H ~(+)-transporting mPPase from Vigna radiata ( Lin et?al., 2012 ) ( Figure 1A ) and the Na ~(+)-transporting mPPase from Thermotoga maritima ( Kellosalo et?al., 2012 ). Two mechanisms to explain coupling between PP _(i) hydrolysis and H ~(+) (Na ~(+)) pumping, proposed based on these structures, differ principally in the order of hydrolysis and transport events and the role of the proton released by the attacking water nucleophile. Figure 1 Membrane pyrophosphatase as an H ~(+) and Na ~(+) transporter. (A) Two views of a subunit of V. radiata homodimeric H ~(+)-pyrophosphatase, showing elements of the transport machinery [PDB code: 4A01; Lin et?al., 2012 )]. The image on the right is a top view from the cytosolic side. Blue sticks, imidodiphosphate; red sphere, water nucleophile (the oxygen atom); green spheres, three gate-forming residues (Arg242, Asp294, and Lys 742); imidodiphosphate-liganded Mg ~(2+), and K ~(+) ions are not shown. Created with PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4, Schrodinger, LLC). (B) Mitchell-type coupling of PP _(i) hydrolysis with H ~(+) transport in a single subunit. The ions (atoms) directly involved in the transport process are marked by colored circles. Two aspartate residues (Asp287 and Asp731 in V. radiata mPPase) coordinate and activate the nucleophilic water molecule during its attack on PP _(i). (C) Electrometric traces of V. radiata pyrophosphatase-loaded liposomes obtained with a Nanion SURFE ~(2)R N1 instrument. Currents were recorded following the addition of K _(4)PP _(i), methylene diphosphonate (MEDP), and K _(2)HPO _(4) in the absence and presence of the protonophore CCCP (carbonyl cyanide m -chlorophenyl hydrazone). This panel was reproduced with permission from Shah et?al. (2017) . (D) A billiard-type mechanism of Na ~(+) transport at a low Na ~(+) concentration. The nucleophile-generated H ~(+) pushes out the gate-bound Na ~(+) (coordinated by Asp243, Glu246, and Asp703 carboxylates in T. maritima mPPase; Li et?al., 2016 ) and passes the gate itself in the same or successive turnover. (E) Inhibition of Na ~(+) transport by a Na ~(+) ion bound at a low-affinity transitory site N. The identities of the residues forming it are yet unknown. (F) An alternative mechanism of concurrent Na ~(+) and H ~(+) transport by different subuni
机译:“科学家们经常辩论理论”。 Douglas Allchin简介介绍某个年龄的人可能会记住(他们的年轻同事可以阅读)20世纪70年代围绕氧化和照片磷酸化耦合机制的生动辩论的叙述。到那时,米切尔的化学性化学假设已经获得了信任,讨论问题是跨膜H〜(+)电位差如何通过F型ATP合成酶驱动ATP合成。考虑的主要机制假设膜(F _(o))和外围(F _(1))部分以不同的方式在功能上连接。 Peter Mitchell提出了一种“直接偶联”机制,其中质子通过F _(O)转移到F _(1)的催化位点,其中它们直接参与ADP磷酸化并形成水作为第二种产品(Mitchell,1974) 。 Paul Boyer,主要竞争机制的支持者,主张了“间接耦合”机制(连续被称为“交替的网站”,“旋转变化”或“旋转”),这些机制暗示了质子间接地将它们的能量转移到催化部位,通过遥远的构象应变(Boyer,1997)。在清楚地发现替代机制与H〜(+)/ ATP化学计量不一致时,辩论得到了解决,最后,当确定F-ATPase的三维结构时,替代机制(+)/ ATP化学计量不一致(亚伯拉罕et? 。,1994)。现在,几十年来,能够与膜焦磷脂酶(MPP酶)有关的能量耦合问题,古代运输铜偶联植物真空和细菌对焦磷酸盐水解的生物膜的H〜(+)和Na〜(+)输送。 MPPases是F型ATPAse的功能类似物,并且类似地催化水分子在磷原子上的直接攻击而不形成磷酸化的中间体。但是,MPPASES具有更简单的结构; MPPase的两个相同亚基中的每一个由15?17次跨膜α-螺旋组成,其中六个形成催化位点在细胞溶质侧。 H〜(+) - 自1966年以来已知(H〜(+) - PP酶)(Baltscheffsky等,1966年,1966年; Serrano等,2007)并被公认为植物胁迫阻力的贡献者(杨et?al。,2014)。最近的研究鉴定了一种进化相关的原核Na〜(+) - 输送MPPase谱系(Na〜(+) - ppass),其可以泵送H〜(+)和Na〜(+)(Malinen et?Al。,2007 ; Luoto et?al。,2013a; luoto et?al。,2013b)。通过2012年的H〜(+)的三维结构从Vigna Radiata运输MPPase(Lin Et〜,2012)(图1A)和NA〜(+) - 从Thermotoga Maritima运输MPPase(Kellosalo et?al。,2012)。在基于这些结构提出的PP _(i)水解和H〜(+)泵送的两个机制(I)水解和H〜(+)(Na〜(+))泵送,主要涉及水解和运输事件的顺序以及质子释放的作用通过攻击水亲核官。图1膜焦磷酸酶作为H〜(+)和Na〜(+)转运蛋白。 (a)V. radiata同源聚合物H〜(+) - 焦磷酸酶的亚基的两个视图,显示出运输机械的元件[PDB代码:4A01;林等?al。,2012)]。右侧的图像是来自细胞骨侧的顶视图。蓝棍,咪啶磷酸;红色球体,水亲核试剂(氧原子);绿色球体,三个浇筑物残留物(Arg242,Asp294和Lys 742);未示出酰亚胺二磷酸盐 - 致羟基磷酸盐 - 致催化Mg〜(2+)和K〜(+)离子。用pymol(Pymol分子图形系统,版本1.5.0.4,Schrodinger,LLC)产生。 (b)PP _(I)水解与单个亚基的H〜(+)输送的米氏型偶联。直接参与运输过程的离子(原子)标有彩色圆圈。在其对PP _(i)的攻击期间,两个天冬氨酸残基(ASP287和V.Radiata MPPase)坐标并激活亲核水分子。 (c)用纳米冲浪〜(2)R N1仪器,得到的V. radiata焦磷酸酶负载脂质体的电动痕迹。在不存在和存在的不存在和存在的情况下,在不存在和存在下加入K _(4)PP _(I),亚甲基二膦酸酯(METP),亚甲基二膦酸盐(METP),亚甲基二膦酸酯(METP)和K _(2)HPO _(4),记录电流腙)。本面板已允许Shah et?Al的许可转载。 (2017)。 (d)低Na〜(+)浓度下Na〜(+)传输的台球型机制。亲核试剂产生的H〜(+)推出栅极结合的Na〜(+)(在Asp243,Glu246和T.Maritima MPPase的Asp703羧酸酯协调; Li et?Al。,2016)并通过门本身同样或连续的营业额。 (e)在低亲和力暂时性位点N的Na〜(+)离子Naβ(+)离子的抑制Na〜(+)离子。形成其残留物的标识尚未赘述。 (f)不同亚基同时NA〜(+)和h〜(+)运输的替代机制

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号