首页> 外文期刊>Earth and Space Science >Theoretical Predictability Limits of Spatially Anisotropic Multifractal Processes: Implications for Weather Prediction
【24h】

Theoretical Predictability Limits of Spatially Anisotropic Multifractal Processes: Implications for Weather Prediction

机译:空间各向异性多分泌过程的理论可预测性限制:天气预报的影响

获取原文
       

摘要

A correlation spectrum‐based approach is used to express the theoretical predictability limits of multifractal processes as an analytical function of their anisotropy parameters. This spatially anisotropic power law function is then used to investigate the general impact of anisotropy on the predictability of atmospheric fields in the weather regime. The investigation reveals that (i) vertical stratification of a field increases and decreases its super and subsphero‐scale predictability limits, respectively; (ii) trivial horizontal anisotropy slightly improves predictability at all scales; and (iii) horizontal anisotropy together with vertical stratification significantly enhances its predictability over almost the entire scale range. Applying these general results to the case of horizontal wind fields suggests that the interplay between spatial‐anisotropy and atmospheric predictability could account for improvements in forecast skill, commonly observed during the occurrence of rotating thunderstorms and breaks in the Indian summer monsoon. Plain Language Summary Quantifying theoretical atmospheric predictability limits is necessary to understand the possibility of making reliable weather predictions. Since atmospheric fields are multifractal and frequently anisotropic with roundish structures near the sphero‐scale, this study expresses the predictability limits via their multifractal and anisotropy parameters for theoretically investigating how spatial anisotropy of a filed impacts its predictability. The investigation shows that horizontal anisotropy moderately increases predictability at all scales, whereas vertical stratification diminishes predictability at scales roughly smaller than the sphero‐scale while enhancing it at larger scales; horizontal anisotropy with vertical stratification, on the other hand, further improves predictability. The spatial anisotropy of horizontal winds seems to be responsible for the extended predictability of organized thunderstorms and monsoon breaks.
机译:基于相关频谱的方法用于表达多重过程的理论可预测性限制作为其各向异性参数的分析功能。然后,这种空间各向异性功率法函数用于研究各向异性对天气制度中大气领域的可预测性的一般影响。调查揭示了(i)场的垂直分层分别增加并降低其超级和腰带尺度的可预测性限制; (ii)琐碎的水平各向异性略微提高了所有尺度的可预测性; (iii)水平各向异性与垂直分层一起显着提高了几乎整个比例范围内的可预测性。将这些一般结果应用于水平风领域的情况表明,空间 - 各向异性和大气预测性之间的相互作用可以解释预测技能的改进,通常观察到在印度夏季季风的旋转雷暴和休息期间发生。普通语言摘要量化理论大气可预测性限制是了解制定可靠天气预报的可能性。由于大气领域是具有圆周结构附近的圆形结构的多重和常态,这项研究表达了可预测性限制,以通过其多重术和各向异性参数来理论研究了如何对提起的空间各向异性影响其可预测性的空间各向异性。调查表明,水平各向异性适度地提高了所有尺度的可预测性,而垂直分层在大致小于球形尺度的尺度下减小可预测性,同时在更大的尺度上增强它;另一方面,具有垂直分层的水平各向异性,进一步提高了可预测性。水平风的空间各向异性似乎负责组织雷暴和季风突破的扩展可预测性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号