首页> 外文期刊>International Journal of Advanced Robotic Systems >Path planning for unmanned surface vehicle based on predictive artificial potential field
【24h】

Path planning for unmanned surface vehicle based on predictive artificial potential field

机译:基于预测人工潜在领域的无人曲面车辆的路径规划

获取原文
           

摘要

The path planning for high-speed unmanned surface vehicle raises more complicated requirements to reduce sailing time and save energy. In this article, a new predictive artificial potential field is proposed using time information and predictive potential to plan a smoother path. The principle of artificial potential field with vehicle dynamics and reachability in local minimum is studied. According to global and local path planning, the most state-of-the-art traditional artificial potential field and its drawback are analysed at first. Then we proposed predictive artificial potential field with three modifications: angle limit, velocity adjustment and predictive potential to improve the feasibility and flatness of the generated path. In addition, we compare the performance between traditional artificial potential field and predictive artificial potential field, where predictive artificial potential field successfully restricts the maximum turning angle, cuts short sailing time and intelligently avoids obstacle. From the simulation results, we also verify that predictive artificial potential field can solve concave local minimum problem and enhance the reachability in special scenario. Therefore, the more reasonable path generated by predictive artificial potential field reduces sailing time and helps conserve more energy for unmanned surface vehicle.
机译:高速无人曲面车辆的路径规划提高了更复杂的要求,以减少帆船时间并节省能源。在本文中,使用时间信息和预测潜力来提出一种新的预测人工势领域来规划更平滑的路径。研究了具有车辆动态和局部最小值的人工潜在场的原理。根据全球和地方路径规划,首先分析了最先进的传统人工潜在领域及其缺点。然后,我们提出了具有三种修改的预测人工潜在领域:角度限制,速度调节和预测潜力,以提高所产生的路径的可行性和平坦度。此外,我们可以比较传统人工潜在场和预测人工势领域之间的性能,其中预测人工势域成功限制了最大转动角度,切割短帆船,智能地避免障碍物。从仿真结果来看,我们还验证了预测人工潜在领域可以解决凹陷的局部最小问题,并提高特殊情况的可达性。因此,通过预测人工势域产生的更合理的路径减少了帆船时间,并有助于保护更多的能量用于无人的表面车辆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号