【24h】

Biologically structured materials

机译:生物结构化材料

获取原文
           

摘要

Biomimetics, biomechanics, and tissue engineering are three multidisciplinary fields that have been contemplated in this research to attain the objective of improving prosthetic implants reliability. Since testing and mathematical methods are closely interlaced, a promising approach seemed to be the combination of in vitro and in vivo experiments with computer simulations (in silico). An innovative biomimetics and biomechanics approach, and a new synthetic structure providing a microenvironment, which is mechanically coherent and nutrient conducive for tissue osteoblast cell cultures used in regenerative medicine, are presented. The novel hybrid ceramic-polymeric nanocomposites are mutually investigated by finite element analysis (FEA) biomimetic modeling, anatomic reconstruction, quantitative-computed-tomography characterization, computer design of tissue scaffold. The starting base materials are a class of innovative highly bioactive hybrid ceramic-polymeric materials set-up by the proponent research group that will be used as a bioactive matrix for the preparation of in situ bio-mineralized techno- structured porous nanocomposites. This study treats biomimetics, biomechanics and tissue engineering as strongly correlated multidisciplinary fields combined to design bone tissue scaffolds. The growth, maintenance, and ossification of bone are fundamental and are regulated by the mechanical cues that are imposed by physical activities: this biomimetic/biomechanical approach will be pursued in designing the experimental procedures for in vitro scaffold mineralization and ossification. Bio-tissue mathematical modeling serves as a central repository to interface design, simulation, and tissue fabrication. Finite element computer analyses will be used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and mandible thickness distributions using single and multi-phase continuum material representations of clinical cases of patients implanted with the traditional protocols. New protocols will be hypothesized for the use of the new biologically techno-structured hybrid materials.
机译:生物体,生物力学和组织工程是三个多学科领域,已经考虑了这项研究,以实现改善假体植入物可靠性的目标。由于测试和数学方法密切隔行,因此有希望的方法似乎是体外和体内实验的组合,计算机仿真(在硅中)。提出了一种创新的生物测量和生物力学方法,以及提供微环境的新型合成结构,其是用于再生医学中使用的组织成骨细胞培养的机械相干和营养。通过有限元分析(FEA)仿生学建模,解剖学重建,定量计算 - 断层扫描特征,计算机设计,通过有限元分析(FEA)仿制性杂交陶瓷聚合物纳米复合材料,组织脚手架的计算机设计。起始基础材料是由Proponent研究组建立的一类创新的高度生物活性杂交陶瓷聚合物材料,该研究组将用作制备原位生物矿化技术结构化多孔纳米复合材料的生物活性基质。本研究将生物体,生物力学和组织工程视为强烈相关的多学科领域,结合设计骨组织支架。骨骼的生长,维护和骨化是基本的,由身体活动施加的机械提示调节:这种仿生/生物力学方法将在设计体外支架矿化和骨化的实验程序方面。生物组织数学建模用作界面设计,仿真和组织制造的中央存储库。有限元计算机分析将用于研究局部组织力学对患者植入传统方案的临床病例的单相连续体材料表示,骨骼形态和下颌骨厚度分布的作用。新协议将被假设用于使用新的生物技术结构化的混合材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号