...
首页> 外文期刊>Atmospheric Measurement Techniques >Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements
【24h】

Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements

机译:机载超角彩虹极性仪(AirHarp)测量的云液滴尺寸特性的空间分布

获取原文

摘要

The global variability of clouds and their interactions with aerosol and radiation make them one of our largest sources of uncertainty related to global radiative forcing. The droplet size distribution (DSD) of clouds is an excellent proxy that connects cloud microphysical properties with radiative impacts on our climate. However, traditional radiometric instruments are information-limited in their DSD retrievals. Radiometric sensors can infer droplet effective radius directly but not the distribution width, which is an important parameter tied to the growth of a cloud field and to the onset of precipitation. DSD heterogeneity hidden inside large pixels, a lack of angular information, and the absence of polarization limit the amount of information these retrievals can provide. Next-generation instruments that can measure at narrow resolutions with multiple view angles on the same pixel, a broad swath, and sensitivity to the intensity and polarization of light are best situated to retrieve DSDs at the pixel level and over a wide spatial field. The Airborne Hyper-Angular Rainbow Polarimeter (HARP) is a wide-field-of-view imaging polarimeter instrument designed by the University of Maryland, Baltimore County (UMBC), for retrievals of cloud droplet size distribution properties over a wide swath, at narrow resolution, and at up to 60 unique, co-located view zenith angles in the 670 nm channel. The cloud droplet effective radius (CDR) and variance (CDV) of a unimodal gamma size distribution are inferred simultaneously by matching measurement to Mie polarized phase functions. For all targets with appropriate geometry, a retrieval is possible, and unprecedented spatial maps of CDR and CDV are made for cloud fields that stretch both across the swath and along the entirety of a flight observation. During the NASA Lake Michigan Ozone Study (LMOS) aircraft campaign in May–June?2017, the Airborne HARP (AirHARP) instrument observed a heterogeneous stratocumulus cloud field along the solar principal plane. Our retrievals from this dataset show that cloud DSD heterogeneity can occur at the 200 m scale, much smaller than the 1–2 km resolution of most spaceborne sensors. This heterogeneity at the sub-pixel level can create artificial broadening of the DSD in retrievals made at resolutions on the order of 0.5 to 1 km. This study, which uses the AirHARP instrument and its data as a proxy for upcoming HARP CubeSat and HARP2 spaceborne instruments, demonstrates the viability of the HARP concept to make cloud measurements at scales of individual clouds, with global coverage, and in a low-cost, compact CubeSat-sized payload.
机译:云的全球变异及其与气溶胶和辐射的相互作用使其成为全球辐射强制相关的最大不确定性来源之一。云层的液滴尺寸分布(DSD)是一种优异的代理,可以将云微妙性质与我们气候的辐射影响连接。然而,传统的辐射仪器是其DSD检索的信息限制。辐射传感器可以直接推断出液滴有效的半径,但不是分布宽度,这是与云场的生长和降水开始的重要参数。 DSD异质性隐藏在大像素内,缺乏角度信息,并且没有极化限制这些检索可以提供的信息量。可以在相同像素的多视角,宽的条形图中具有多个视角的窄分辨率的下一代仪器,以及光的强度和极化的灵敏度最佳地定位以在像素电平和宽空间场上检索DSD。空中超角彩虹偏振仪(竖琴)是由马里兰大学巴尔的摩县(UMBC)设计的广泛查看偏振仪仪器,用于在宽敞的条件下检索云液滴尺寸分布特性的检索分辨率,最多60个独特,共同位于670nm通道中的Zenith角度。通过将测量与MIE偏振相函数匹配,可以同时推断单峰伽马尺寸分布的云液滴有效半径(CDR)和方差(CDV)。对于所有具有适当几何形状的目标,可以检索检索,并且CDR和CDV的前所未有的空间地图用于横跨围绕其次延伸的云场以及沿着飞行观察的整体。在美国宇航局密歇根湖臭氧学习(LMOS)飞机运动期间,于6月至6月举行的飞机运动2017,空中竖琴(Airharp)仪器观察了沿太阳能主体平面的异质划线云场。我们从这个数据集中的检索显示,云DSD异质性可以在200米级,远小于大多数星载传感器的1-2公里分辨率。在子像素水平下的这种异质性可以在定位的检索中创造DSD的人工扩大,大约为0.5至1km。本研究使用Airharp仪器及其数据作为即将到来的HARP CUBESAT和HARP2 Spanceborne Instruments的代理,展示了HARP概念的可行性,使云测量在各个云的尺度上,具有全球覆盖率,并以低成本,紧凑的立方体大小有效载荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号