...
首页> 外文期刊>American Journal of Plant Sciences >Plant Senescence: The Role of Volatile Terpene Compounds (VTCs)
【24h】

Plant Senescence: The Role of Volatile Terpene Compounds (VTCs)

机译:植物衰老:挥发性萜烯化合物(VTCS)的作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Senescence is a natural, energy-dependent, style="font-family:""> style="font-family:Verdana;">physiological, developmental and an ecological process that is controlled by the plant’s own genetic program, allowing maximum recovery of nutrients from older organs for the survival of the plant, as such; it is classified as essential component of the growth and development of plants. In some cases, under one or many environmental stresses, senescence is triggered in plants. Despite m style="font-family:Verdana;">any style="font-family:Verdana;"> stud style="font-family:Verdana;">ies style="font-family:Verdana;"> in the area, less consideration has been given to plant secondary metabolites, especially the role of VTCs on plant senescence. This review seeks to capture style="font-family:""> style="font-family:Verdana;">the biosynthesis style="font-family:""> style="font-family:Verdana;">and signal transduction of VTCs, the physiology of VTCs in plant development and how that is linked to some phytohormones to induce senescence. style="font-family:""> style="font-family:Verdana;">Much progress has been made in the elucidation of metabolic pathways leading to the biosynthesis of VTCs. In addition to the classical cytosolic mevalonic acid (MVA) pathway from acetyl-CoA, the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, originating from glyceraldehyde-3-phosphate (GAP) and pyruvate, lead style="font-family:Verdana;">s style="font-family:""> style="font-family:Verdana;"> to the biosynthesis of isoprenoid precursors, isopentenyl diphosphate and dimethyl allyl diphosphate. VTCs synthesis and emission are believed to be tightly regulated by photosynthetic carbon supply into MEP pathway. Thus, under abiotic stresses such as drought, high salinity, high and low temperature, and low CO style="font-family:Verdana;">2 style="font-family:Verdana;"> that directly affect stomatal conductance and ultimately biochemical limitation to photosynthesis, style="font-family:""> style="font-family:Verdana;">there has been observed induction of VTC synthesis and emissions, reflecting the elicitation of MEP pathway. This reveals the possibility of important function(s) of VTCs in plant defense against stress by mobilizing resources from components of plants and therefore, senescence. style="font-family:""> style="font-family:Verdana;">Our current understanding of the relationship between environmental responses and senescence mostly come style="font-family:Verdana;">s style="font-family:Verdana;"> from the study of senescence response to phytohormones such as abscisic acid, jasmonic acid, ethylene and salicylic acid, which are extensively involved in response to various abiotic and biotic stresses. These stresses affect synthesis and/or signaling pathways of style="font-family:""> style="font-family:Verdana;">phytohormones to eventually trigger expression of stress-responsive genes, which in turn appears to affect leaf senescence. Comparison of plant response to stresses in relation to patterns of VTCs and phytohormones style="font-family:""> style="font-family:Verdana;">biosynthesis indicate style="font-family:Verdana;">s style="font-family:Verdana;"> a considerable crosstalk between these metabolic processes and their signal to plant senescence.
机译:衰老是一种自然的,能量依赖性, <跨度样式=“字体家庭:”“> <跨度样式=”font-family:verdana;“>生理,发育和生态过程由工厂自己的遗传计划控制,允许从旧器官的营养物中最大地恢复植物的存活率;它被归类为植物生长和发展的基本组成部分。在某些情况下,在一个或多个环境下植物中触发了衰老。尽管M 任何 y style =“font-family:verdana;”> stud style =“font-family:verdana;”> ies style =“font-family:verdana;”>在该地区,已经考虑了植物次级代谢物,特别是VTC的作用在植物衰老上。此审查旨在捕获 style =“font-family:”“”> style =“font-family:verdana;”>生物合成 style =“字体家庭:”“> style =”字体 - 家庭:Verdana;“>和vtcs的信号转导,植物开发中VTCS的生理学以及与某些植物激素有关以诱导衰老的方式。 style =”font-family:“”> <跨度样式=“font-family:verdana;”>在阐明了导致VTC的生物合成的代谢途径中取得了很大进展。除了从乙酰-CoA的典型细胞溶质甲醛酸(MVA)途径之外,源自甘油醛-3-磷酸(间隙)和丙酮酸铅的2-C-甲基-D-赤藓糖醇4-磷酸(MEP)途径,铅< / span> style =“font-family:verdana;”> s style =“font-family:”“”> style =“font-family:verdana;”>到生物合成异戊二烯前体,异戊烯基二磷酸二磷酸二磷酸二磷酸二磷酸二磷酸二磷酸二磷酸酯。据信通过光合碳供应进入MEP途径紧密调节。因此,在非生物胁迫下,如干旱,高盐度,高温和低温,低CO style =“font-family:verdana;”> 2 style =“font-family:verdana;”>直接影响气孔电导并最终生化的生物化学限制光合作用, style =“font-family:”“”> style =“font-family:verdana;”>已观察到VTC合成和排放诱导,反映了Eli.引用MEP途径。这揭示了通过从植物组分的组件和衰老的组件调动植物防御植物防御VTC的重要功能的可能性。 <跨度样式=“字体家庭:”“> < Span Style =“Font-Family:Verdana;”>我们目前对环境反应与衰老之间的关系大多来 <跨度样式=“Font-Family:Verdana;”> S 从衰老对植物激素的研究等植物激素,例如脱离酸,茉莉酸,乙烯和水杨酸,其广泛参与各种非生物和生物应力。这些应力影响合成和/或 style =“font-family:”的信令路径,“> 样式=”font-family:verdana;“>植物激素最终触发应激响应基因的表达,这在转向似乎影响叶片衰老。植物响应对VTCS和植物和植物激素模式的应力的比较 <跨度样式=“字体家族:”“> 样式=”font-family:verdana;“>生物合成表示< / span> style =“font-family:verdana;”> s style =“font-family:verdana;”>在这些代谢过程和它们对植物衰老的信号之间存在相当大的串扰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号