首页> 外文期刊>AIP Advances >Nonlinear dispersive regularization of inviscid gas dynamics
【24h】

Nonlinear dispersive regularization of inviscid gas dynamics

机译:Inciscid气体动力学的非线性分散正规化

获取原文
           

摘要

Ideal gas dynamics can develop shock-like singularities with discontinuous density. Viscosity typically regularizes such singularities and leads to a shock structure. On the other hand, in one dimension, singularities in the Hopf equation can be non-dissipatively smoothed via Korteweg–de Vries (KdV) dispersion. In this paper, we develop a minimal conservative regularization of 3D ideal adiabatic flow of a gas with polytropic exponent γ . It is achieved by augmenting the Hamiltonian by a capillarity energy β ( ρ )(? ρ ) 2 . The simplest capillarity coefficient leading to local conservation laws for mass, momentum, energy, and entropy using the standard Poisson brackets is β ( ρ ) = β * / ρ for constant β * . This leads to a Korteweg-like stress and nonlinear terms in the momentum equation with third derivatives of ρ , which are related to the Bohm potential and Gross quantum pressure. Just like KdV, our equations admit sound waves with a leading cubic dispersion relation, solitary waves, and periodic traveling waves. As with KdV, there are no steady continuous shock-like solutions satisfying the Rankine–Hugoniot conditions. Nevertheless, in one-dimension, for γ = 2, numerical solutions show that the gradient catastrophe is averted through the formation of pairs of solitary waves, which can display approximate phase-shift scattering. Numerics also indicate recurrent behavior in periodic domains. These observations are related to an equivalence between our regularized equations (in the special case of constant specific entropy potential flow in any dimension) and the defocusing nonlinear Schr?dinger equation (cubically nonlinear for γ = 2), with β * playing the role of ? 2 . Thus, our regularization of gas dynamics may be viewed as a generalization of both the single field KdV and nonlinear Schr?dinger equations to include the adiabatic dynamics of density, velocity, pressure, and entropy in any dimension.
机译:理想的气体动力学可以具有不连续密度的冲击状奇异性。粘度通常规则地规划这种奇点并导致休克结构。另一方面,在一个尺寸中,HOPF方程中的奇点可以通过Korteweg-de VRIES(KDV)分散来非耗散地平滑。在本文中,我们开发了一种具有多种多联γ的气体的3D理想绝热流动的最小保守正则化。通过增加毛细管能量β(ρ)(ρ)2来实现汉密尔顿(ρ)2来实现。最简单的毛细径系数导致局部保护规律的质量,动量,能量和使用标准泊松支架的熵是β(ρ)=β* /ρ用于恒定β*。这导致了具有ρ的第三衍生物的动量方程中的korteeg形的应力和非线性术语,其与BoHM电位和总量子压力有关。就像KDV一样,我们的等式承认具有领先的立方体色散关系,孤独的波浪和周期性的行驶波的声波。与KDV一样,没有稳定的连续冲击式解决方案,满足兰氏毒素的条件。然而,对于γ= 2,数值解决方案表明,梯度灾难通过形成偏离波的形成,可以显示近似相移散射。数值还指示周期性域中的复发行为。这些观察结果与我们的规则化方程之间的等效相等(在任何尺寸的恒定特定熵电位流动的特殊情况下)和散焦非线性SCHR?Dinger方程(γ= 2的判断率= 2),具有β*扮演的作用? 2。因此,我们的气体动力学的正则化可以被视为单场KDV和非线性SCHR?Dinger方程的概括,以包括密度,速度,压力和熵在任何尺寸中的绝热动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号