...
首页> 外文期刊>AIP Advances >A study of bubble growth in the compressible Rayleigh–Taylor and Richtmyer–Meshkov instabilities
【24h】

A study of bubble growth in the compressible Rayleigh–Taylor and Richtmyer–Meshkov instabilities

机译:压缩瑞利泰勒泡沫增长研究及富含富马 - Meshkov稳定性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Within the framework of modified Layzer-type potential flow theory [V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88 , 134502 (2002)], we study bubble growth in compressible Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities. It is known from adiabatic equations that the density ρ and adiabatic index γ are compressibility-related factors for a given static pressure p . Here, we introduce a dynamically varying stagnation point pressure P ? = p ± 1 2 ρ ? η ? 0 2 , which relates time-varying quantities, such as fluid density ρ ? , pressure P ? , and bubble tip velocity η ? 0 , and then, we analytically derive the governing equations for time evolution of bubbles in the RT and RM instabilities of compressible fluids. For the RT instability, the upper fluid adiabatic index γ u and density ρ u increase the bubble amplitude and velocity, but they decrease the bubble curvature radius at the early stage, while the lower fluid adiabatic index γ l and density ρ l have opposite effects on those of γ u and ρ u , which is consistent with recent results. For the RM instability, γ u and ρ u decrease the bubble amplitude and velocity, but they increase the bubble curvature radius at the early stage; however, γ l and ρ l have opposite effects on those of γ u and ρ u . Moreover, we find a good agreement between our three-dimensional results of the RM bubble amplitude and recent numerical simulations.
机译:在改进的边框型电位流理论的框架内[V. N.GonCharov,“非线性,单模,古典瑞利泰勒不稳定性的”非线性Atwood数字的分析模型“,”Qual“。 rev. lett。 88,134502(2002)],我们研究了可压缩瑞利 - 泰勒(RT)和Richtmyer-Meshkov(RM)稳定性的泡沫增长。从绝热方程中已知密度ρ和绝热指数γ是给定静压P的可压缩性相关的因素。在这里,我们介绍了一个动态变化的停滞点压力p? = P±1 2ρ? η? 0 2,其涉及时变量,例如流体密度ρ?压力p?和气泡尖端速度η? 0,然后,我们分析了RT和RM不可抑制的泡沫的时间演变的控制方程。对于RT不稳定性,上流体绝热指数γU和密度ρU增加气泡幅度和速度,但它们在早期阶段降低气泡曲率半径,而下流体绝热指数γ1和密度ρL具有相反的效果关于γu和ρu的那些,这与最近的结果一致。对于RM不稳定性,γU和ρU降低气泡幅度和速度,但它们在早期增加了气泡曲率半径;然而,γ1和ρl对γu和ρu的效果相反。此外,我们在RM气泡幅度的三维结果和近期数值模拟之间找到了良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号