...
首页> 外文期刊>AIP Advances >Flying wing flow separation control by microsecond pulsed dielectric barrier discharge at high Reynolds number
【24h】

Flying wing flow separation control by microsecond pulsed dielectric barrier discharge at high Reynolds number

机译:通过微秒脉冲介质屏障排放在高雷诺数的飞行翼流分离控制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In this study, a microsecond pulsed dielectric barrier discharge ( μ s-DBD) plasma actuator is utilized to improve the aerodynamic performance of a flying wing. The wind tunnel experiments were conducted by the μ s-DBD plasma actuator at a high Reynolds number (Re = 2.61 × 10sup6/sup). The effects of discharge position and pulse frequency on the flow control performance were studied by force measurements. The particle image velocimetry test was used to reveal the influence of plasma actuation on the detailed velocity field at the suction side of the flying wing. Results show that plasma actuation can significantly improve the aerodynamic performance of the flying wing under high Reynolds number. The best flow control effect is obtained when the plasma actuator is mounted near stagnation point (0.1% C). There is an optimal excitation frequency (100 Hz) at Re = 2.61 × 10sup6/sup (corresponding to the wind speed of 70 m/s), at which the flow instability can be effectively excited. In the optimal situation, the relative improvement of the maximum lift coefficient reaches 20.51% and the stall angle is delayed by 6°. The flow control performance is mainly achieved at the outer part of the wing because the flow separation develops gradually from the wing tip to the root. These experimental results contribute to the free flight test in the wind tunnel and the flight test in real air conditions.
机译:在该研究中,利用微秒脉冲介质屏障放电(μS-DBD)等离子体致动器来改善飞翼的空气动力学性能。风隧道实验由μS-DBD等离子体致动器在高雷诺数(Re = 2.61×10 6 )进行。通过力测量研究了放电位置和脉冲频率对流量控制性能的影响。粒子图像测速试验用于揭示等离子体致动对飞机吸入侧的详细速度场的影响。结果表明,在高雷诺数下,等离子体致动可以显着提高飞翼的空气动力学性能。当等离子体致动器安装在停滞点附近时,获得最佳流量控制效果(0.1%C)。在RE = 2.61×10 6 (对应于70m / s的风速)时,存在最佳激发频率(100Hz),在该6/14(对应于70m / s的风速),可以有效地激发流量不稳定性。在最佳情况下,最大提升系数的相对改善达到20.51%,并且失速角度延迟6°。流量控制性能主要实现在机翼的外部,因为流动分离从翼尖逐渐发展到根部。这些实验结果有助于风隧道的自由飞行试验和实际空气条件下的飞行试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号