首页> 外文期刊>Aerospace science and technology >Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator
【24h】

Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator

机译:带微秒脉冲表面介质阻挡放电执行器的高升力机翼的流量控制

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, microsecond pulsed surface dielectric barrier discharge (mSDBD) is utilized to improve the aerodynamic characteristics of a high-lift wing. First, the characteristics of the mSDBD were tested qualitatively by a Schlieren system, revealing that the thermal perturbation induced by rapid heating is the main flow feature of the mSDBD at low working frequency. Subsequently, wind tunnel experiments were conducted at a free-stream speed of 45 m/s (Re = 1.34 x 10(6)) to investigate the effects of discharge frequency on the aerodynamic performance of the wing. Results indicate that there is an optimal excitation frequency or frequency band, at which the flow instability can be effectively excited. In this optimal situation, the relative improvement of the maximum lift coefficient reaches 9.1% and the stall angle is delayed by 4 degrees. Besides, the flow control mechanisms with mSDBD actuation were analyzed by Large-eddy simulation (LES). The large-scale vortex induced by fast gas heating creates two negative pressure zones near the wing root and tip, both of which are crucial for lift augmentation. Moreover, when plasma actuation is applied to the case of small flap deflection, comparable or even better flow control effects are obtained, in reference to the case of large flap deflection but without plasma actuation. Based on these experimental and simulation results, a novel concept of plasma-actuator-enhanced high-lift wing was proposed. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:在这项研究中,微秒脉冲表面介电屏障放电(mSDBD)用于改善高升力机翼的空气动力学特性。首先,通过Schlieren系统对mSDBD的特性进行了定性测试,结果表明,快速加热引起的热扰动是mSDBD在低工作频率下的主要流动特征。随后,以45 m / s的自由流速度(Re = 1.34 x 10(6))进行风洞实验,以研究排气频率对机翼空气动力性能的影响。结果表明存在一个最佳激发频率或频带,可以在该频率或频带上有效地激发流动不稳定性。在这种最佳情况下,最大升力系数的相对提高达到9.1%,失速角延迟了4度。此外,通过大涡模拟(LES)分析了带有mSDBD驱动的流量控制机制。快速气体加热引起的大规模涡旋在机翼根部和叶尖附近形成两个负压区,这两个区对于升力的增强至关重要。此外,当将等离子体致动应用于小阀瓣偏转的情况下,相对于较大的阀瓣偏转但没有等离子体致动的情况,获得了相当甚至更好的流量控制效果。基于这些实验和仿真结果,提出了等离子体致动器增强的高升力机翼的新概念。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2020年第1期|105584.1-105584.11|共11页
  • 作者

  • 作者单位

    Air Force Engn Univ Sci & Technol Plasma Dynam Lab Xian 710038 Peoples R China;

    Air Force Engn Univ Sci & Technol Plasma Dynam Lab Xian 710038 Peoples R China|Xi An Jiao Tong Univ Inst Aeroengine Sch Mech Engn Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microsecond pulsed SDBD actuator; Flow control; High-lift wing; Large-eddy simulation;

    机译:微秒脉冲SDBD执行器;流量控制;高升力机翼;大涡模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号