首页> 外文期刊>AIP Advances >Design of a plasmonic back reflector using Ag nanoparticles with a mirror support for an a-Si:H solar cell
【24h】

Design of a plasmonic back reflector using Ag nanoparticles with a mirror support for an a-Si:H solar cell

机译:使用Ag纳米粒子的等离子体背反射器设计具有A-Si:H太阳能电池的镜子载体

获取原文
       

摘要

Plasmonic nanoparticles have unique optical properties and these properties are affected by any surrounding structures, or lack thereof. Nanoparticles are often added to a device without fully assessing the effect that each interface will have on the nanoparticle’s response. In this work, we simulate and fabricate devices utilizing hemispherical nanoparticles integrated into the back reflector of an amorphous silicon solar cell. 3D finite difference time domain simulations were used to calculate the optical absorption of a 300nm amorphous silicon layer as a function of the size of the nanoparticles, the distance between the nanoparticles and the active layer, and the distance between the nanoparticles and the mirror. Two transparent conducting oxides, aluminum doped zinc oxide and indium tin oxide, are investigated to determine the importance of the material properties between the nanoparticles and mirror. Silver hemispherical nanoparticles with a diameter of 150nm placed directly on the a-Si:H and a 60nm aluminum doped zinc oxide layer between the nanoparticles and the mirror lead to a maximum absorption increase of 7.2% in the 500nm to 800nm wavelength range. Experimental devices confirmed the trends predicted by theory but did not achieve enhancement, likely due to fabrication challenges. Fabricating a solar cell with the simulated design requires a high quality transparent conductive oxide and high control over the nanoparticle size distribution.
机译:等离子体纳米颗粒具有独特的光学性质,这些性质受任何周围结构的影响或其缺乏。通常将纳米颗粒添加到装置中而不完全评估每个界面对纳米颗粒的反应的影响。在这项工作中,我们模拟和制造利用集成到非晶硅太阳能电池的后反射器中的半球形纳米颗粒的装置。 3D有限差分时域模拟用于计算作为纳米颗粒的尺寸的函数的300nm非晶硅层的光学吸收,纳米颗粒和有源层之间的距离,以及纳米颗粒和镜子之间的距离。研究了两个透明的导电氧化物,铝掺杂氧化锌和氧化铟锡,以确定纳米颗粒和镜子之间的材料性质的重要性。直径为150nm的银半球形纳米颗粒直接放置在A-Si:H和纳米颗粒之间的60nm掺杂的氧化锌层上,在500nm至800nm波长范围内的最大吸收增加7.2%。实验装置证实了理论预测的趋势,但没有达到增强,可能是由于制造挑战。用模拟设计制造太阳能电池需要高质量的透明导电氧化物和高控制纳米颗粒尺寸分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号