...
首页> 外文期刊>ACS Omega >Probing Nanoparticle–Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells
【24h】

Probing Nanoparticle–Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells

机译:使用微拉曼光谱探测纳米粒子细胞相互作用:银和金纳米粒子诱导对光学捕获的活红细胞的应力效应

获取原文
           

摘要

Advancements in the field of nanotechnology have resulted in the emergence of a large variety of engineered nanomaterials for innumerable applications. Despite the ubiquitous use of nanomaterials in daily life, concerns regarding the potential toxicity and safety of these materials have also been raised. There is a high demand for assessing the unwanted effects of both gold and silver nanoparticles, which is increasingly being used in biomedical applications. This paper deals with the study of stress due to silver and gold nanoparticles of varying size on red blood cells (RBCs) using Raman tweezers spectroscopy. RBCs were incubated with nanoparticles of size in the 10–100 nm range with the same concentrations, and micro-Raman spectra were recorded by optically trapping the nanoparticle-treated live RBCs. Spectral modifications implicating hemoglobin deoxygenation were observed in all nanoparticle-treated RBCs. One of the probable reason for the deoxygenation trend can be the adhesion of nanoparticles onto the cell surface causing imbalance in cell functioning. Moreover, the higher spectral variations observed for silver nanoparticles indicate that oxidative stress is involved in cell damage. These mechanisms lead to the modification in the hemoglobin structure because of changes in the pH of cytoplasm, which can be detected using Raman spectroscopy.
机译:纳米技术领域的进步导致了大量工程化纳米材料的出现,用于无数应用。尽管日常生活中纳米材料无处不在,但也提出了关于这些材料的潜在毒性和安全性的担忧。对评估金和银纳米颗粒的不需要效果的需求很高,这越来越多地用于生物医学应用。本文涉及使用拉曼镊子光谱对红细胞(RBCS)在红细胞(RBC)上不同大小的金和金纳米颗粒的压力研究。用相同浓度的10-100nm范围内与纳米颗粒孵育RBC,通过光学捕获纳米粒子处理的活RBC来记录微拉曼光谱。在所有纳米颗粒处理的RBC中观察到暗集血红蛋白脱氧的光谱修饰。脱氧趋势的可能原因之一可以是纳米颗粒的粘附到细胞表面引起细胞功能不平衡。此外,对于银纳米颗粒观察到的较高的光谱变化表明氧化应激参与细胞损伤。由于细胞质的pH值,这些机制导致血红蛋白结构的改性,其可以使用拉曼光谱检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号