...
首页> 外文期刊>Advanced Modeling and Simulation in Engineering Sciences >Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior
【24h】

Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior

机译:人工神经网络在界面力学预测中的应用:晶界本构行为的研究

获取原文

摘要

The present work aims at the identification of the effective constitutive behavior of Σ 5 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$Sigma 5$$end{document} aluminum grain boundaries (GB) for proportional loading by using machine learning (ML) techniques. The input for the ML approach is high accuracy data gathered in challenging molecular dynamics (MD) simulations at the atomic scale for varying temperatures and loading conditions. The effective traction-separation relation is recorded during the MD simulations. The raw MD data then serves for the training of an artificial neural network (ANN) as a surrogate model of the constitutive behavior at the grain boundary. Despite the extremely fluctuating nature of the MD data and its inhomogeneous distribution in the traction-separation space, the ANN surrogate trained on the raw MD data shows a very good agreement in the average behavior without any data-smoothing or pre-processing. Further, it is shown that the trained traction-separation ANN captures important physical properties and is able to predict traction values for given separations not contained in the training data. For example, MD simulations show a transition in traction-separation behaviour from pure sliding mode under shear load to combined GB sliding and decohesion with intermediate hardening regime at mixed load directions. These changes in GB behaviour are fully captured in the ANN predictions. Furthermore, by construction, the ANN surrogate is differentiable for arbitrary separation and also temperature, such that a thermo-mechanical tangent stiffness operator can always be evaluated. The trained ANN can then serve for large-scale FE simulation as an alternative to direct MD-FE coupling which is often infeasible in practical applications.
机译:目前的工作旨在识别Σ5 documentClass [12pt]的有效本构行为[12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$$$ egma 5 $$ end {document}铝晶晶界(GB)通过使用机器学习来进行比例加载(ml )技术。 ML方法的输入是在原子尺度处具有挑战性分子动力学(MD)模拟的高精度数据,以进行不同的温度和装载条件。在MD仿真期间记录有效的牵引分离关系。然后,原始MD数据用于训练人工神经网络(ANN)作为晶界的本构体行为的代理模型。尽管MD数据的性质极其波动及其在牵引分离空间中的不均匀分布,但是在原始MD数据上培训的ANN代理在没有任何数据平滑或预处理的情况下在平均行为中显示出非常好的一致性。此外,示出了训练的牵引分离ANN捕获重要的物理特性,并且能够预测未包含在训练数据中的给定分离的牵引值。例如,MD仿真在剪切载荷下从纯滑动模式下的牵引分离行为中的过渡到与混合负载方向上的中间硬化调节器组合的GB滑动和解粘。在ANN预测中完全捕获GB行为的这些变化。此外,通过施工,ANN替代对于任意分离和温度来说是可微分的,使得可以始终评估热机械切线刚度操作员。然后,培训的ANN可以用于大规模的FE模拟,作为直接MD-FE耦合的替代方案,这在实际应用中通常是不可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号