...
首页> 外文期刊>Advances in Chemical Engineering and Science >Computational Studies of DNA Separations in Micro-Fabricated Devices: Review of General Approaches and Recent Applications
【24h】

Computational Studies of DNA Separations in Micro-Fabricated Devices: Review of General Approaches and Recent Applications

机译:微制成装置中DNA分离的计算研究:综合综合方法和最近的应用

获取原文

摘要

DNA separation techniques have drawn attention because of their uses in applications such as gene analysis and manipulation. There have been many studies utilizing micro-fabricated devices for faster and more efficient separations than traditional methods using gel electrophoresis. Although many experimental studies have presented various new devices and methods, computational studies have played a pivotal role in this development by identifying separation mechanisms and by finding optimal designs for efficient separation conditions. The simulation of DNA separation methods in micro-fabricated devices requires the correct capture of the dynamics and the structure of a single polymer molecule that is being affected by an applied flow field or an electric field in complex geometries. In this work, we summarize the polymer models (the bead-spring model, the bead-rod model, the slender-body model, and the touching-bead model) and the methods, focusing on Brownian dynamics simulation, used to calculate inhomogeneous fields taking into consideration complex boundaries (the finite element method, the boundary element method, the lattice-Boltzmann method, and the dissipative particle dynamics simulation). The worm-like chain model (adapted from the bead-spring model) combined with the finite element method has been most commonly used but other models have shown more efficient and accurate results. We also review the applications of these simulation approaches in various separation methods and devices: gel electrophoresis, post arrays, capillary electrophoresis, microchannel flows, entropic traps, nanopores, and rotational flows. As more complicated geometries are involved in new devices, more rigorous models (such as incorporating the hydrodynamic interactions of DNA with solid boundaries) that can correctly capture the dynamic behaviors of DNA in such devices are needed.
机译:由于它们在基因分析和操纵等应用中的应用,DNA分离技术引起了注意。利用微制造装置的研究有许多研究比使用凝胶电泳的传统方法更快和更有效地分离。虽然许多实验研究呈现了各种新设备和方法,但是通过识别分离机制并通过找到有效分离条件的最佳设计,计算研究在这一发展中发挥了枢转作用。微制造装置中DNA分离方法的模拟需要正确的动力学捕获和由施加的流场或复杂几何形状中的电场影响的单个聚合物分子的结构。在这项工作中,我们总结了聚合物模型(珠子弹簧模型,珠子杆模型,纤维型模型和触摸珠模型)以及专注于布朗尼动力学模拟的方法,用于计算不均匀的领域考虑到复杂的边界(有限元方法,边界元法,Lattice-Boltzmann方法和耗散粒子动力学模拟)。最常用的是与有限元法相结合的蜗杆状链式(适应珠子弹簧模型),但其他模型已经显示出更有效和准确的结果。我们还在各种分离方法和设备中审查这些模拟方法的应用:凝胶电泳,后阵列,毛细管电泳,微通道流动,熵陷阱,纳米孔和旋转流动。随着更复杂的几何形状涉及新器件,需要更严格的模型(例如将可以正确捕获在这些装置中DNA的动态行为的DNA的流体动力相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号