首页> 外文期刊>A+BE : Architecture and the Built Environment >Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation
【24h】

Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation

机译:用于路由的室内语义模型:室内导航的两级路由方法

获取原文
       

摘要

Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1) indoor positioning and localization; 2) indoor space representation for navigation model generation; 3) indoor routing computation; 4) human wayfinding behaviours; and 5) indoor guidance (e.g., textual directories). So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles), which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest).In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first) level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges stand for their connectivity; the detailed (second) level focuses on transition spaces such as openings and Spaces of Interest (SOI), and geometric networks are generated regarding these spaces. Nodes of a geometric network refers to locations of doors, windows and subspaces (SOIs) inside of the larger spaces; and the edges represent detailed paths among these geometric nodes. A combination of the two levels can represent complex buildings in specified spaces, which avoids maintaining a largescale complete network. User preferences on ordered SOIs are considered in routing on the logical network, and preferences on ordered Points of Interest (POI) are adopted in routing on geometric networks. In a geometric network, accessible obstacle-avoiding paths can be computed for users with different sizes.To facilitate automatic generation of the two types of network in any building, a new data model named Indoor Navigation Space Model (INSM) is proposed to store connectivity, semantics and geometry of indoor spaces for buildings. Abundant semantics of building components are designed in INSM based on navigational functionalities, such as VerticalUnit(VU) and HorizontalConnector(HC) as vertical and horizontal passages for pedestrians. The INSM supports different subdivision ways of a building in which indoor spaces can be assigned proper semantics.A logical and geometric network can be automatically derived from INSM, and they can be used individually or together for indoor routing. Thus, different routing options are designed. Paths can be provided by using either the logical network when some users are satisfied with a rough description of the path (e.g., the name of spaces), or a geometric path is automatically computed for a user who needs only a detailed path which shows how obstacles can be avoided. The two-level routing approach integrates both logical and geometric networks to obtain paths, when a user provides her/his preferences on SOIs and POIs. For example, routing results for the logical network can exclude unrelated spaces and then derive geometric paths more efficiently. In this thesis, two options are proposed for routing just on the logical network, three options are proposed for routing just on the geometric networks, and seven options for two-level routing.On the logical network, six routing criteria are proposed and three human wayfinding strategies are adopted to simulate human indoor behaviours. According to a specific criterion, space semantics of logical nodes is utilized to assign different weights to logical nodes and edges. Therefore, routing on the logical network can be accomplished by applying the Dijkstra algorithm. If multiple criteria are adopted, an order of criteria is applied for routing according to a specific user. In this way, logical paths can be computed as a sequence of indoor spaces with clear semantics.On geometric networks, this thesis proposes a new routing method to provide detailed paths avoiding indoor obstacles with re
机译:人类在室内进行许多活动,他们表现出不断增长的室内导航,特别是在陌生的建筑物,如机场,博物馆和医院。这些建筑物的复杂性对建筑物和访客构成了许多挑战。室内导航服务在支持这些室内活动方面发挥着重要作用。室内导航涵盖广泛的主题,如:1)室内定位和本地化; 2)导航模型生成的室内空间表示; 3)室内路线计算; 4)人类的途径行为; 5)室内指导(例如,文本目录)。到目前为止,对行人室内导航的大量研究呈现了不同的导航模型和路由算法/方法。然而,主要挑战很少提到:如何根据用户的不同角色和大小来代表行人的复杂室内环境和进行路由。这种复杂的建筑物含有不规则的形状,大型开放空间,复杂的障碍物和不同类型的段落。如果在室内准确地表示,导航模型可能非常复杂。虽然大多数研究表明,在普通建筑物中展示了可行的室内导航模型和相关路线方法,但重点仍然位于被简化为圆的行人的一般导航模型。实际上,行人代表不同的尺寸,运动能力和偏好(例如,在用户配置文件中描述),其应该被反映在导航模型中,并且被认为是室内路由(例如,感兴趣的相关空间和兴趣点)。在顺序到解决这一挑战,本论文提出了一种创新的室内建模和路由方法 - 两级路由。它专门针对不同用户的复杂建筑物路由的情况。概念(第一)级别使用一般的免费室内空间:这由逻辑网络表示,其节点表示空间和边缘代表其连接;详细的(第二)水平重点介绍过渡空间,例如感兴趣的开口和空间(SOI),并且关于这些空间产生几何网络。几何网络的节点是指较大空间内的门,窗口和子空间(SOIS)的位置;并且边缘代表这些几何节点之间的详细路径。两个级别的组合可以代表指定空间中的复杂建筑,这避免了维持Largescale完整网络。订购SOI的用户偏好被认为是在逻辑网络上路由中,并且在几何网络上路由中采用了对兴趣点(POI)的偏好。在几何网络中,可以为具有不同大小的用户计算可访问的避免路径。要促进任何构建中的两种类型的网络的自动生成,提出了一个名为室内导航空间模型(INSM)的新数据模型来存储连接建筑物的室内空间的语义和几何形状。建筑组件的丰富语义是基于导航功能的INSM设计,例如SymertureUnit(VU)和StructalConnector(HC),作为行人的垂直和水平段落。 INSM支持可以分配适当语义可以分配室内空间的建筑物的不同细分方式。逻辑和几何网络可以自动源自INSM,它们可以单独使用或一起用于室内路由。因此,设计了不同的路由选项。当某些用户对路径的粗略描述满足时,可以通过使用逻辑网络(例如,空格的名称),或者仅针对需要一个详细路径的用户自动计算几何路径来提供路径可以避免障碍。两级路由方法集成了逻辑和几何网络,以获取路径,当用户在SOI和POI上提供她/他的偏好时。例如,逻辑网络的路由结果可以排除不相关的空格,然后更有效地推导几何路径。在本文中,提出了两个选项,用于刚刚在逻辑网络上路由,提出三个选项,用于在几何网络上路由,以及两个级别路由的七个选项。逻辑网络,提出六个路由标准,并提出了三个人采用了途径策略来模拟人类室内行为。根据具体标准,利用逻辑节点的空间语义来将不同的权重分配给逻辑节点和边缘。因此,可以通过应用Dijkstra算法来完成对逻辑网络的路由。如果采用多个标准,则根据特定用户应用标准顺序。以这种方式,可以计算逻辑路径作为具有清晰语义的室内空间序列。多个网络,本文提出了一种新的路由方法来提供详细路径,避免与RE的室内障碍物避免室内障碍物

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号