首页> 外文期刊>Chemical science >Exploiting clock transitions for the chemical design of resilient molecular spin qubits
【24h】

Exploiting clock transitions for the chemical design of resilient molecular spin qubits

机译:利用弹性分子旋转Qubits的化学设计时钟过渡

获取原文
       

摘要

Molecular spin qubits are chemical nanoobjects with promising applications that are so far hampered by the rapid loss of quantum information, a process known as decoherence. A strategy to improve this situation involves employing so-called Clock Transitions (CTs), which arise at anticrossings between spin energy levels. At CTs, the spin states are protected from magnetic noise and present an enhanced quantum coherence. Unfortunately, these optimal points are intrinsically hard to control since their transition energy cannot be tuned by an external magnetic field; moreover, their resilience towards geometric distortions has not yet been analyzed. Here we employ a python-based computational tool for the systematic theoretical analysis and chemical optimization of CTs. We compare three relevant case studies with increasingly complex ground states. First, we start with vanadium( IV )-based spin qubits, where the avoided crossings are controlled by hyperfine interaction and find that these S = 1/2 systems are very promising, in particular in the case of vanadyl complexes in an L-band pulsed EPR setup. Second, we proceed with a study of the effect of symmetry distortions in a holmium polyoxotungstate of formula [Ho(W _(5) O _(18) ) _(2) ] ~(9?) where CTs had already been experimentally demonstrated. Here we determine the relative importance of the different structural distortions that causes the anticrossings. Third, we study the most complicated case, a polyoxopalladate cube [HoPd _(12) (AsPh) _(8) O _(32) ] ~(5?) which presents an unusually rich ground spin multiplet. This system allows us to find uniquely favorable CTs that could nevertheless be accessible with standard pulsed EPR equipment (X-band or Q-band) after a suitable chemical distortion to break the perfect cubic symmetry. Since anticrossings and CTs constitute a rich source of physical phenomena in very different kinds of quantum systems, the generalization of this study is expected to have impact not only in molecular spin science but also in other related fields such as molecular photophysics and photochemistry.
机译:分子旋转Qubits是化学纳米对象,具有迄今为止迅速丧失量子信息的快速损失的有前途的应用,该过程称为变形的过程。改进这种情况的策略涉及采用所谓的时钟过渡(CTS),其在旋转能量水平之间存在抵抗。在CTS处,旋转状态免受磁噪声的保护,并提高量子相干性。不幸的是,这些最佳点本质上难以控制,因为它们的过渡能量不能通过外部磁场调节;此外,尚未分析它们对几何扭曲的弹性。在这里,我们采用了基于Python的计算工具,用于CTS的系统理论分析和化学优化。我们与越来越复杂的地面态进行比较三项相关案例研究。首先,我们从钒(IV)的旋转Qubits开始,其中避免的交叉通过高血清相互作用控制,并发现这些S = 1/2系统非常有前途,特别是在L波段中的钒基复合物的情况下脉冲EPR设置。其次,我们继续研究对对称性失真在式[HO(W _(5)o _(18)))_(2)]〜(9?)的对称性失真的影响,其中CTS已经通过实验证明了。在这里,我们确定导致逆转的不同结构扭曲的相对重要性。第三,我们研究了最复杂的案例,一种聚氧基化物立方体[跳跃_(12)(alph)_(8)o _(32)]〜(5?),它呈现出异常丰富的地面自旋多功能。该系统允许我们找到独特的有利CT,以便在合适的化学失真之后可以使用标准脉冲EPR设备(X波段或Q波段)以破坏完美的立方对称性。由于逆转和CTS构成了在非常不同的量子系统中具有丰富的物理现象来源,因此该研究的概括预计不仅在分子旋转科学中产生的影响,而且在其他相关领域,如分子光学和光化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号