首页> 外文期刊>Nature >Enhancing coherence in molecular spin qubits via atomic clock transitions
【24h】

Enhancing coherence in molecular spin qubits via atomic clock transitions

机译:通过原子钟跃迁增强分子自旋量子位的相干性

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest(1,2). There are many competing candidates for qubits, including superconducting circuits(3), quantum optical cavities(4), ultracold atoms(5) and spin qubits(6-8), and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction(9). To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon(6), whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules(10). However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a 'bottom-up' approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.
机译:量子计算是信息科学中围绕量子比特(qubits)概念发展的一个新兴领域。一个主要的障碍是这些量子位由于与环境的相互作用破坏了其量子性而极度脆弱。这种现象称为退相干,具有根本的意义(1,2)。量子比特的竞争者很多,包括超导电路(3),量子光腔(4),超冷原子(5)和自旋量子比特(6-8),每个都有其优缺点。当处理自旋量子位时,退相干的最强来源是磁偶极相互作用(9)。为了使其最小化,通常将自旋稀释在抗磁性基质中。例如,这种稀释可采取至硅中单个磷原子的极限(6),而在分子基质中,典型比例是每10,000个基质分子中有一个磁性分子(10)。但是,在通过稀释降低退相干与通过自旋量子位之间的相互作用进行量子操作之间存在根本矛盾。为了解决这个矛盾,量子硬件的设计和工程可以从“自下而上”的方法中受益,通过这种方法,化学方法可以对磁性分子的电子结构进行化学修饰,以提供所需的物理行为。在这里,我们提出了一种增强固态分子自旋量子位相干性的方法,而无需求助于极端稀释。它基于分子结构的设计,该分子结构的晶体场基态具有较大的隧穿间隙,从而产生了最佳的工作点或原子钟跃迁,从而使量子自旋动力学免受偶极退相干的影响。 approach分子纳米磁体对此方法进行了说明,其中以异常高的浓度获得了较长的相干时间(在5开尔文下可达8.4微秒)。这一发现为基于分子自旋量子位的量子计算开辟了新途径。

著录项

  • 来源
    《Nature》 |2016年第7594期|348-351|共4页
  • 作者单位

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA|Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA|Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA;

    Univ Valencia, Inst Ciencia Mol, C Catedrat Jose Beltran 2, Paterna 46980, Spain;

    Univ Valencia, Inst Ciencia Mol, C Catedrat Jose Beltran 2, Paterna 46980, Spain;

    Univ Valencia, Inst Ciencia Mol, C Catedrat Jose Beltran 2, Paterna 46980, Spain;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA|Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号