...
首页> 外文期刊>Chemical science >Benchmarking the acceleration of materials discovery by sequential learning
【24h】

Benchmarking the acceleration of materials discovery by sequential learning

机译:通过顺序学习基准测试材料发现的加速度

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Sequential learning (SL) strategies, i.e. iteratively updating a machine learning model to guide experiments, have been proposed to significantly accelerate materials discovery and research. Applications on computational datasets and a handful of optimization experiments have demonstrated the promise of SL, motivating a quantitative evaluation of its ability to accelerate materials discovery, specifically in the case of physical experiments. The benchmarking effort in the present work quantifies the performance of SL algorithms with respect to a breadth of research goals: discovery of any “good” material, discovery of all “good” materials, and discovery of a model that accurately predicts the performance of new materials. To benchmark the effectiveness of different machine learning models against these goals, we use datasets in which the performance of all materials in the search space is known from high-throughput synthesis and electrochemistry experiments. Each dataset contains all pseudo-quaternary metal oxide combinations from a set of six elements (chemical space), the performance metric chosen is the electrocatalytic activity (overpotential) for the oxygen evolution reaction (OER). A diverse set of SL schemes is tested on four chemical spaces, each containing 2121 catalysts. The presented work suggests that research can be accelerated by up to a factor of 20 compared to random acquisition in specific scenarios. The results also show that certain choices of SL models are ill-suited for a given research goal resulting in substantial deceleration compared to random acquisition methods. The results provide quantitative guidance on how to tune an SL strategy for a given research goal and demonstrate the need for a new generation of materials-aware SL algorithms to further accelerate materials discovery.
机译:顺序学习(SL)策略,即迭代地更新机器学习模型以指导实验,已经提出了大大加速材料发现和研究。计算数据集的应用和少数优化实验已经证明了SL的承诺,激励了其加速材料发现能力的定量评估,特别是在物理实验的情况下。本工作中的基准努力量化了SL算法对研究目标的广度的性能:发现任何“良好”的材料,发现所有“良好”材料的发现,并发现一个准确预测新的模型的模型材料。为了基准对这些目标的不同机器学习模型的有效性,我们使用的数据集从高通量合成和电化学实验中已知搜索空间中的所有材料的性能。每个数据集包含来自一组六个元素(化学空间)的所有伪季金属氧化物组合,所选择的性能度量是氧气进化反应的电催化活性(OER)。在四个化学空间上测试各种SL方案,每个化学位含有2121个催化剂。所呈现的工作表明,与特定情景中的随机收购相比,研究可以加速高达一个倍数。结果还表明,与随机采集方法相比,SL模型的某些选择对于给定的研究目标,产生了大量减速。结果提供了关于如何调整给定研究目标的SL策略的定量指导,并展示了新一代材料感知的SL算法进一步加速材料发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号