...
首页> 外文期刊>Chemical science >Origin of poor doping efficiency in solution processed organic semiconductors
【24h】

Origin of poor doping efficiency in solution processed organic semiconductors

机译:溶液加工有机半导体掺杂效率不佳的起源

获取原文
           

摘要

Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ~250 cm ~(?1) with an intermolecular distance of ~4.5 ? between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.
机译:掺杂是一个极其重要的过程,其中半导体中有意插入杂质控制其电子性质。在有机半导体中,一种方便但低效,掺杂方式是溶液中组分的前体混合物的旋铸,然后溶剂蒸发。对此过程的主动控制使得对当前较差的兴奋剂效率的显着改善的关键。然而,优化的控制只能从对负责低掺杂效率的电子交互的详细了解。这里,我们使用二维非线性光学光谱通过探测掺杂有机半导体的溶液混合物来检查掺杂过程过程中的这些相互作用。掺杂剂接受来自半导体的电子,两离子形成称为离子对复合物的相互作用电荷的双链体。二维光谱中的良好的偏差峰清楚地展示了解决方案中离子之间的电子连接。该电子相互作用表示良好的静电束缚状态,而不是离子的随机分布。我们开发了一种恢复实验数据的理论模型,揭示了〜250cm〜(?1)的意外强大的电子耦合,分子间距离约为4.5?在溶液中的离子之间,这大约是加工薄膜中的预期距离。这种关系持续到加工薄膜的解决方案的事实提供了直接证据,使得库仑相互作用从前体溶液中保留到加工薄膜。这种记忆效应使电荷载体同样粘合在薄膜中,因此导致较差的掺杂效率。这种新的洞察力将帮助为改善加工有机半导体薄膜中的电子相互作用进行合理剪裁的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号