首页> 美国卫生研究院文献>Chemical Science >Origin of poor doping efficiency in solution processed organic semiconductors
【2h】

Origin of poor doping efficiency in solution processed organic semiconductors

机译:溶液处理有机半导体中掺杂效率差的根源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm–1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.
机译:掺杂是极其重要的过程,其中杂质在半导体中的有意插入会控制其电子性能。在有机半导体中,一种方便但低效的掺杂方法是溶液中各组分的前驱体混合物的旋铸,然后进行溶剂蒸发。对该过程的主动控制是显着改善当前不良掺杂效率的关键。然而,优化的控制只能来自对引起低掺杂效率的电子相互作用的详细理解。在这里,我们使用二维非线性光学光谱法,通过探测掺杂的有机半导体的混合溶液来检查掺杂过程中的这些相互作用。掺杂剂接受来自半导体的电子,并且两个离子形成相互作用电荷的双链体,称为离子对络合物。二维光谱中良好解析的非对角峰清楚地表明了溶液中离子之间的电子连通性。与离子的随机分布相反,这种电子相互作用代表了良好解析的静电结合状态。我们开发了一个理论模型来恢复实验数据,该模型揭示了〜250 cm –1 的出乎意料的强电子耦合,溶液中离子之间的分子间距离为〜4.5Å,这大约是预期的距离在冲洗过的电影中。这种关系从溶液到已加工的膜一直存在,这一事实直接证明了库仑相互作用从前体溶液到已加工的膜得以保留。这种记忆效应使电荷载流子也同样键合在薄膜中,因此导致不良的掺杂效率。这一新见解将有助于为电子相互作用的合理剪裁铺平道路,以提高处理后的有机半导体薄膜的掺杂效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号