...
首页> 外文期刊>BMC Plant Biology >Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum
【24h】

Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum

机译:器官和时间标度的转录组分析显示了控制Solanum Lycopersicum的硫酸盐饥饿反应的基因调节网络

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.
机译:硫是生物分子的主要成分,因此是植物的必需元素。硫酸盐缺乏,土壤中硫的主要来源,对植物生长和作物产量产生负面影响。硫酸盐对植物的影响已经很好地表征了拟南芥的生理,转录组和代谢组水平和有限数量的作物植物。然而,我们仍然彻底了解大多数植物中硫酸盐缺乏的分子机制和监管网络的彻底了解。在这项工作中,我们分析了硫酸盐饥饿对番茄植物的转录组的影响,以在时间和器官规模识别调控网络和关键转录调节剂。硫酸盐饥饿减少了根部和叶子的生长,其伴随器官转录组的主要变化,响应在根系中的响应比叶子在时间上较早。比较分析表明,在这些植物之间保守了拟南芥和番茄转发组的主要部分对硫酸盐饥饿的反应,并允许鉴定在转录水平的番茄中特异性调节的方法,包括对内部磷酸盐水平的控制。综合基因网络分析揭示了控制硫酸盐同化的基因的时间表达的关键转录因子,以及在番茄根和叶片中硫酸盐饥饿期间的细胞周期,细胞分裂和光合作用。有趣的是,这些转录因子中的一种具有硫磺限制的高度,拟南芥中硫酸盐饥饿反应的中心分组分。我们的结果在一起,提供了番茄中番茄中硫酸盐响应基因的第一个综合目录,以及番茄和其他作物将来功能分析的新型监管目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号