...
首页> 外文期刊>BMC Plant Biology >Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize ( Zea mays L.)
【24h】

Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize ( Zea mays L.)

机译:玉米(Zea Mays L.)的产量相关性状和中母杂种的遗传解剖和中父杂种优势

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Utilization of heterosis in maize could be critical in maize breeding for boosting grain yield. However, the genetic architecture of heterosis is not fully understood. To dissect the genetic basis of yield-related traits and heterosis in maize, 301 recombinant inbred lines derived from 08 to 641?×?YE478 and 298 hybrids from the immortalized F2 (IF2) population were used to map quantitative trait loci (QTLs) for nine yield-related traits and mid-parent heterosis. We observed 156 QTLs, 28 pairs of loci with epistatic interaction, and 10 significant QTL?×?environment interactions in the inbred and hybrid mapping populations. The high heterosis in F1 and IF2 populations for kernel weight per ear (KWPE), ear weight per ear (EWPE), and kernel number per row (KNPR) matched the high percentages of QTLs (over 50%) for those traits exhibiting overdominance, whereas a notable predominance of loci with dominance effects (more than 70%) was observed for traits that show low heterosis such as cob weight per ear (CWPE), rate of kernel production (RKP), ear length (EL), ear diameter (ED), cob diameter, and row number (RN). The environmentally stable QTL qRKP3–2 was identified across two mapping populations, while qKWPE9, affecting the trait mean and the mid-parent heterosis (MPH) level, explained over 18% of phenotypic variations. Nine QTLs, qEWPE9–1, qEWPE10–1, qCWPE6, qEL8, qED2–2, qRN10–1, qKWPE9, qKWPE10–1, and qRKP4–3, accounted for over 10% of phenotypic variation. In addition, QTL mapping identified 95 QTLs that were gathered together and integrated into 33 QTL clusters on 10 chromosomes. The results revealed that (1) the inheritance of yield-related traits and MPH in the heterotic pattern improved Reid (PA)?×?Tem-tropic I (PB) is trait-dependent; (2) a large proportion of loci showed dominance effects, whereas overdominance also contributed to MPH for KNPR, EWPE, and KWPE; (3) marker-assisted selection for markers at genomic regions 1.09–1.11, 2.04, 3.08–3.09, and 10.04–10.05 contributed to hybrid performance per se and heterosis and were repeatedly reported in previous studies using different heterotic patterns is recommended.
机译:玉米杂种杂种的利用可能是玉米育种的关键,用于提高籽粒产量。然而,杂种优势的遗传建筑尚未完全理解。解剖玉米产量相关的性状和杂种优势的遗传基础,从08至641〜641〜641〜641〜641〜641的重组近交系均用于从永生化F2(IF2)群体的298次杂交物用于映射定量特质基因座(QTL)九个产量相关的性状和中父杂种杂种。我们观察到156 QTL,28对具有认识性互动的基因座,10个重要的QTL?×?X×?互相和混合映射种群的环境交互。 F1和IF2填充的高杂种优势为每只耳朵(KWPE),耳重(EWPE),每排核数(KNPR)匹配表现出过度大同的那些特征的QTL(超过50%)的高百分比匹配,虽然具有优势效应的基因座的显着优势(超过70%),但表现出低杂种优势如每只耳(CWPE),籽粒生产率(RKP),耳长(EL),耳直径( ED),COB直径和行号(RN)。环境稳定的QTL QRKP3-2在两个测绘群体中鉴定,而QKWPE9影响特质平均值和中父杂种杂种(MPH)水平,解释了18%以上的表型变化。九QTL,QEWPE9-1,QEWPE10-1,QCWPE6,QEL8,QED2-2,QRN10-1,QKWPE9,QKWPE10-1和QRKP4-3,占表型变异的10%以上。此外,QTL映射识别95 QTL,该QTL集成在一起,并在10个染色体上集成到33个QTL簇中。结果表明,(1)遗传相关性状和MPH在异水模式改善的Reid(PA)?××Tem-Tropic I(PB)是特质依赖性的; (2)大部分基因座显示出优势效应,而跨度引起of Overdoinance也为KNPR,EWPE和KWPE的MPH做出了贡献。 (3)基因组区域的标记物的标记选择1.09-1.11,2.04,3.08-3.09和10.04-10.05导致杂化性能本身和杂种优势,并在先前的使用不同的单态模式中反复报道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号