首页> 外文期刊>BMC Bioinformatics >Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes
【24h】

Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes

机译:大肠杆菌菌株对氧化应激的适应反映在其结构蛋白质组的性质中

获取原文
       

摘要

BACKGROUND:The reconstruction of metabolic networks and the three-dimensional coverage of protein structures have reached the genome-scale in the widely studied Escherichia coli K-12 MG1655 strain. The combination of the two leads to the formation of a structural systems biology framework, which we have used to analyze differences between the reactive oxygen species (ROS) sensitivity of the proteomes of sequenced strains of E. coli. As proteins are one of the main targets of oxidative damage, understanding how the genetic changes of different strains of a species relates to its oxidative environment can reveal hypotheses as to why these variations arise and suggest directions of future experimental work.RESULTS:Creating a reference structural proteome for E. coli allows us to comprehensively map genetic changes in 1764 different strains to their locations on 4118 3D protein structures. We use metabolic modeling to predict basal ROS production levels (ROStype) for 695 of these strains, finding that strains with both higher and lower basal levels tend to enrich their proteomes with antioxidative properties, and speculate as to why that is. We computationally assess a strain's sensitivity to an oxidative environment, based on known chemical mechanisms of oxidative damage to protein groups, defined by their localization and functionality. Two general groups - metalloproteins and periplasmic proteins - show enrichment of their antioxidative properties between the 695 strains with a predicted ROStype as well as 116 strains with an assigned pathotype. Specifically, proteins that a) utilize a molybdenum ion as a cofactor and b) are involved in the biogenesis of fimbriae show intriguing protective properties to resist oxidative damage. Overall, these findings indicate that a strain's sensitivity to oxidative damage can be elucidated from the structural proteome, though future experimental work is needed to validate our model assumptions and findings.CONCLUSION:We thus demonstrate that structural systems biology enables a proteome-wide, computational assessment of changes to atomic-level physicochemical properties and of oxidative damage mechanisms for multiple strains in a species. This integrative approach opens new avenues to study adaptation to a particular environment based on physiological properties predicted from sequence alone.
机译:背景:代谢网络的重建和蛋白质结构的三维覆盖已经达到了广泛研究的大肠杆菌K-12mg1655菌株的基因组规模。两者的组合导致形成结构系统生物框架,我们用于分析大肠杆菌的测序菌株的活性氧物种(ROS)敏感性之间的差异。随着蛋白质是氧化损伤的主要目标之一,了解不同种类的不同菌株的遗传变化如何涉及其氧化环境,可以揭示假设,以及为什么这些变化出现和建议未来实验工作的方向。结果:创建参考大肠杆菌的结构蛋白质组允许我们将1764年不同菌株的遗传变化全面地映射到它们的4118 3D蛋白质结构的位置。我们使用代谢模型来预测这些菌株的695个基础ROS生产水平(rostype),发现具有较高和较低的基础水平的菌株倾向于富集其蛋白质蛋白酶,并推测为什么是抗氧化性能。基于通过其本地化和功能定义的已知氧化损伤的已知化学机制,我们计算菌株对氧化环境的敏感性。两种一般组 - 金属蛋白和周质蛋白 - 显示其在695株的抗氧化特性的富集,其具有预测的雷哒哒哒,以及具有分配的致病型的116株。具体而言,a)利用钼离子作为辅因子和b)的蛋白质涉及FIMBRIAE的生物发生,显示有趣的保护性能以抵抗氧化损伤。总体而言,这些发现表明,菌株对氧化损伤的敏感性可以从结构蛋白质中阐明,尽管需要未来的实验工作来验证我们的模型假设和发现。结论:我们表明,结构系统生物学使蛋白质型 - 宽的计算能够实现评估物种中多种菌株的原子水平物理性质和氧化损伤机制的评估。这种综合方法将开启新的途径,以基于单独预测的生理特性研究适应特定环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号