...
首页> 外文期刊>BMC Bioinformatics >Systematic assignment of thermodynamic constraints in metabolic network models
【24h】

Systematic assignment of thermodynamic constraints in metabolic network models

机译:代谢网络模型中热力学约束的系统分配

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models. Results We present an algorithm that – based on thermodynamics, network topology and heuristic rules – automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli . The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to disable thermodynamically infeasible energy production. Conclusion Although not being fully comprehensive, our algorithm for systematic reaction direction assignment could define a significant number of irreversible reactions automatically with low computational effort. We envision that the presented algorithm is a valuable part of a computational framework that assists the automated reconstruction of genome-scale metabolic models.
机译:背景技术许多生物体的基因组序列的可用性使得重建了几种基因组级代谢网络模型。目前,重大努力进入了这种模型的自动重建。为此,已经开发了几种计算工具,特别是特别有助于识别和编制特定的代谢反应的有机体特异性列表。相反,模型重建过程的最后一步是在反应方向上的热力学约束的定义,仍然需要手动完成。不存在计算方法,其允许在基因组规模模型中自动化和系统分配反应方向。结果我们提出了一种算法 - 基于热力学,网络拓扑和启发式规则 - 在代谢模型中自动分配反应方向,使得反应网络对能量等同物的生产热力学上可行的。它首先利用所有可用的实验衍生的吉布斯能量的形成,以确定不可逆的反应。由于这些热力学数据不适用于所有代谢物,在下一步中,基于网络拓扑考虑和基于热力学的启发式规则来分配进一步的反作用力。简而言之,该算法识别能够将低能量的基板转换为它们的高能对应物的代谢网络中的反应子集,因此净产生能量。我们的算法旨在通过基于一组热力学衍生的启发式规则分配反应方向来禁用这种热力学上不可行的循环操作。我们在大肠杆菌的基因组级代谢模型上展示了我们的算法。引入的系统方向分配产生130个不可逆的反应(超过920总反应),其对应于所有不可逆反应的约70%,这是禁用热力学上不可行的能量产生所需的。结论虽然没有完全全面,但我们的系统反应方向分配算法可以以低计算工作自动定义大量不可逆反应。我们设想所呈现的算法是计算框架的有价值部分,有助于实现基因组代谢模型的自动重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号