首页> 外文学位 >New Applications of Constraint-Based Modeling: Network Comparisons, Thermodynamic Feasibility, and Community Dynamics.
【24h】

New Applications of Constraint-Based Modeling: Network Comparisons, Thermodynamic Feasibility, and Community Dynamics.

机译:基于约束的建模的新应用:网络比较,热力学可行性和社区动力学。

获取原文
获取原文并翻译 | 示例

摘要

An organism's metabolism can be described via a genome-scale network reconstruction (GENRE), a structured collection of biochemical transformations and their associated genes. GENREs serve as platforms for the development of genome-scale metabolic models (GEMs), mathematical models which enable an organism's phenotype to be evaluated computationally via constraint-based methods (CBMs). Constraint-based modeling integrate optimization with physiochemical constraints to define and idenfity feasible cellular behaviors. This dissertation describes computational methods which advance the field of constraint-based modeling in three areas: network comparisons, thermodynamic constraints, and community CBMs.;Advances in genome sequencing and software development have enabled the rapid construction of GEMs, but methods for comparing GEMs remain in their infancy. We have developed an approach to identify functional differences between GEMs by comparing GENREs aligned at the gene level. Our approach (CONGA) seeks genes whose deletion disproportionately changes flux through a selected reaction (e.g., growth) in one model over another. Through a number of examples, we demonstrate this this approach can be used to identify differences in GENRE content which enable unique metabolic capabilities.;The predictive accuracy of CBMs depends on the degree to which constraints eliminate infeasible behaviors. Using thermodynamics-based metabolic flux analysis (TMFA), we implemented thermodynamic constraints on an Escherichia coli GENRE. We examined the effect of these constraints on the flux space, and assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data. We propose that TMFA is a useful tool for validating phenotypes, and that additional types of data and constraints can improve predictions of metabolite concentrations.;In anaerobic syntrophic communities, electrons are transferred between species via reactions which are tightly constrained by thermodynamics. We developed and analyzed a thermodynamic coculture model of the syntrophic association between Syntrophobacter fumaroxidans and Methanosprillum hungatei. Our analysis revealed that thermodynamic constraints alone are insufficient to correctly predict the mechanism of H2 production by S. fumaroxidans. Our model also describes the contributions of different H2 production modes to electron transfer in the community, and predicts that S. fumaroxidans may alter its metabolic behavior in the presence of a high relative abundance of M. hungatei..
机译:可以通过基因组规模的网络重建(GENRE),生化转化及其相关基因的结构化集合来描述生物体的代谢。 GENRE作为开发基因组规模代谢模型(GEM)的平台,该数学模型使生物的表型可以通过基于约束的方法(CBM)进行计算评估。基于约束的建模将优化与理化约束集成在一起,以定义和识别可行的细胞行为。本文在网络比较,热力学约束和社区煤层气三个方面介绍了基于约束的建模方法的计算方法。基因组测序和软件开发方面的进展使GEM的快速构建成为可能,但是GEM的比较方法仍然存在在他们的婴儿期。我们已经开发出一种方法,可以通过比较在基因水平上对齐的GENRE来识别GEM之间的功能差异。我们的方法(CONGA)寻找一种基因,其缺失通过一个模型中的选定反应(例如,生长)与另一模型中的通量成比例地变化。通过大量示例,我们证明了这种方法可用于识别可实现独特代谢功能的GENRE含量差异。CBM的预测准确性取决于约束消除不可行行为的程度。使用基于热力学的代谢通量分析(TMFA),我们对大肠杆菌GENRE实施了热力学约束。我们检查了这些约束条件对通量空间的影响,并评估了TMFA对基因本质和定量代谢组学数据的预测性能。我们认为TMFA是验证表型的有用工具,并且其他类型的数据和约束条件可以改善代谢物浓度的预测。在厌氧的共生群落中,电子通过受热力学严格约束的反应在物种之间转移。我们开发并分析了嗜热滑膜细菌和饥饿型甲烷菌之间的同养关系的热力学共培养模型。我们的分析表明,仅热力学约束条件不足以正确预测褐藻链球菌产生氢气的机理。我们的模型还描述了不同的H2产生方式对社区中电子转移的贡献,并预测在富营养的M. Hangatei的情况下,S。fumaroxidans可能会改变其代谢行为。

著录项

  • 作者

    Hamilton, Joshua James.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号