首页> 外文期刊>Scientific reports. >Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance
【24h】

Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance

机译:来自沙漠地衣成型真菌,Endocarpon Pusillum Hedwig的嗜肝素的功能分析,揭示了其在压力耐受性中的作用

获取原文
           

摘要

Endocarpon pusillum is a lichen-forming fungus with an outstanding stress resistance property closely related to its antioxidant system. In this study, thioredoxin (Trx), one of the main components of antioxidant defense systems in E. pusillum (EpTrx), was characterized and analyzed both in transgenic yeasts and in vitro. Our analyses identified that the heterologous expression of EpTrx in the yeast Pichia pastoris significantly enhanced its resistance to osmotic and oxidative stresses. Assays in vitro showed EpTrx acted as a disulfide reductase as well as a molecular chaperone by assembling into various polymeric structures. Upon exposure to heat-shock stress, EpTrx exhibited weaker disulfide reductase activity but stronger chaperone activity, which coincided with the switching of the protein complexes from low molecular weight forms to high molecular weight complexes. Specifically, we found that Cys31 near but not at the active site was crucial in promoting the structural and functional transitions, most likely by accelerating the formation of intermolecular disulfide bond. Transgenic Saccharomyces cerevisiae harboring the native EpTrx exhibited stronger tolerance to oxidative, osmotic and high temperature stresses than the corresponding yeast strain containing the mutant EpTrx (C31S). Our results provide the first molecular evidence on how Trx influences stress response in lichen-forming fungi.
机译:Endocarpon pusillum是一种地衣形成的真菌,其具有与其抗氧化系统密切相关的突出应力性。在该研究中,硫昔林(TRX)是E.Pusillum(EPTRX)中抗氧化剂防御系统的主要成分之一,其特征在于转基因酵母和体外。我们的分析确定了EPTRX在酵母Pichia牧场中的异源表达显着提高了其对渗透和氧化应激的抵抗力。通过组装成各种聚合物结构,体外体外测定表现为二硫化物还原酶以及分子伴侣。暴露于热冲击应激后,EPTRX表现出较弱的二硫化物还原酶活性,但伴随伴侣活性较强,这与低分子量形式的蛋白质复合物切换到高分子量复合物。具体而言,我们发现附近但在活性位点附近的Cys31对于促进结构和功能转变至关重要,最有可能通过加速分子间二硫键的形成。封存天然EPTRX的转基因酿酒酵母遗传症对含有突变体EPTRX(C31s)的相应酵母菌菌具有更强的氧化,渗透和高温胁迫。我们的结果提供了关于TRX如何影响地衣形成真菌的应激反应的第一种分子证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号