...
首页> 外文期刊>Physical Review C >Collinear cluster tri-partition: Kinematics constraints and stability of collinearity
【24h】

Collinear cluster tri-partition: Kinematics constraints and stability of collinearity

机译:Conlinear Cluster Tri-Partition:运动学约束和相连的稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Background: A new mode of nuclear fission has been proposed by the FOBOS Collaboration, called collinear cluster tri-partition (CCT), and suggests that three heavy fission fragments can be emitted perfectly collinearly in low-energy fission. This claim is based on indirect observations via missing-energy events using the 2v2E method. This proposed CCT seems to be an extraordinary new aspect of nuclear fission. It is surprising that CCT escaped observation for so long given the relatively high reported yield of roughly 0.5% relative to binary fission. These claims call for an independent verification with a different experimental technique. Purpose: Verification experiments based on direct observation of CCT fragments with fission-fragment spectrometers require guidance with respect to the allowed kinetic-energy range, which we present in this paper. Furthermore, we discuss corresponding model calculations which, if CCT is found in such verification experiments, could indicate how the breakups proceed. Since CCT refers to collinear emission, we also study the intrinsic stability of collinearity. Methods: Three different decay models are used that together span the timescales of three-body fission. These models are used to calculate the possible kinetic-energy ranges of CCT fragments by varying fragment mass splits, excitation energies, neutron multiplicities, and scission-point configurations. Calculations are presented for the systems ~(235)U(nth,f ) and ~(252)Cf(sf ), and the fission fragments previously reported for CCT; namely, isotopes of the elements Ni, Si, Ca, and Sn. In addition, we use semiclassical trajectory calculations with a Monte Carlo method to study the intrinsic stability of collinearity. Results: CCT has a high net Q value but, in a sequential decay, the intermediate steps are energetically and geometrically unfavorable or even forbidden. Moreover, perfect collinearity is extremely unstable, and broken by the slightest perturbation. Conclusions: According to our results, the central fragment would be very difficult to detect due to its low kinetic energy, raising the question of why other 2v2E experiments could not detect a missing-mass signature corresponding to CCT. Considering the high kinetic energies of the outer fragments reported in our study, direct-observation experiments should be able to observe CCT. Furthermore, we find that a realization of CCT would require an unphysical fine tuning of the initial conditions. Finally, our stability calculations indicate that, due to the pronounced instability of the collinear configuration, a prolate scission configuration does not necessarily lead to collinear emission, nor does equatorial emission necessarily imply an oblate scission configuration. In conclusion, our results enable independent experimental verification and encourage further critical theoretical studies of CCT.
机译:背景:FoBOS协作提出了一种新的核裂变模式,称为共线簇三分区(CCT),并表明,在低能量裂变中可以完全结合三个重型裂变片段。该权利要求基于使用2V2E方法通过缺失的能量事件的间接观察。这项拟议的CCT似乎是核裂变的非凡的新方面。令人惊讶的是,由于相对较高的报告的产量相对于二元裂变,CCT逃离了观察。这些索赔要求以不同的实验技术进行独立验证。目的:基于直接观察CCT片段具有裂变片段光谱仪的验证实验需要我们在本文中呈现的允许的动能范围的指导。此外,我们讨论了相应的模型计算,如果在这种验证实验中发现CCT,则可以指出分解如何进行。由于CCT指的是共线发射,我们还研究了共同性的内在稳定性。方法:使用三种不同的腐烂模型,将三体裂缝的时间段跨越。这些模型用于通过改变片段质量分裂,激发能量,中子多样性和裂入点配置来计算CCT片段的可能的动能范围。为系统〜(235)u(nth,f)和〜(252)cf(sf)和先前报告的裂变片段的计算呈现计算;即元素的同位素Ni,Si,Ca和Sn。此外,我们使用具有Monte Carlo方法的半半扫描轨迹计算来研究共同性的内在稳定性。结果:CCT具有高净Q值,但在顺序衰减中,中间步骤在大力和几何上不利或甚至被禁止。此外,完美的共线性非常不稳定,并且通过丝毫的扰动破裂。结论:根据我们的结果,由于其低动能,中央片段是非常难以检测的,因此提出了其他2V2E实验无法检测到对应于CCT的缺失质量签名的问题。考虑我们研究报告的外部碎片的高动力量,直接观察实验应该能够观察CCT。此外,我们发现CCT的实现需要对初始条件的不良微调。最后,我们的稳定性计算表明,由于共线配置的明显不稳定性,不断的易于配置不一定导致共线发射,也不一定是赤道发射必然意味着禁止易于易于的易于易于配置。总之,我们的结果使独立的实验验证能够进行独立的实验验证,并鼓励进一步对CCT的关键理论研究。

著录项

  • 来源
    《Physical Review C》 |2017年第2017期|014602.1-014602.19|共19页
  • 作者单位

    Department of Physics Chalmers University of Technology SE-41296 Gothenburg Sweden Institut Laue Langevin 71 avenue des Martyrs F-38042 Grenoble Cedex 9 France;

    Institut Laue Langevin 71 avenue des Martyrs F-38042 Grenoble Cedex 9 France;

    Department of Physics Chalmers University of Technology SE-41296 Gothenburg Sweden;

    Department of Physics Chalmers University of Technology SE-41296 Gothenburg Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号