首页> 外文期刊>Journal of vision >Learning of eye movements for human and optimal models during search in complex statistical environments
【24h】

Learning of eye movements for human and optimal models during search in complex statistical environments

机译:在复杂统计环境中搜索期间人类和最佳模型的眼球运动

获取原文
           

摘要

Little is known about how organisms modify their eye movements to optimize perceptual performance. Here, we investigate changes in human eye movements given practice at a visual search task with a complex statistical structure and compare these to a foveated Bayesian ideal learner (FBIL) that uses posterior probabilities from previous trials as priors in subsequent trials to plan saccades. Methods: Seven participants searched for a vertically aligned Gabor (8 cycles/deg) signal (yeso task with 50% probability of target presence) embedded in spatiotemporal white-noise. The image was briefly presented (500ms) and subtended 22.2x29.6?° visual angle. If present, the signal always appeared in the one of six locations (with equal probability per location) arranged around a circle with a radius of 4.4?° whose center was located 16.6?° from initial fixation. Participants were informed that there were six possible equi-probability target locations, but were given no information about their spatial configuration. A separate study measured each observera??s detectability of the target as a function of eccentricity (visibility map). Results: All but one participanta??s perceptual performance improved across the 3600 trials (mean ?? proportion correct between first and last 100 trials: 0.19?±0.03). For these six observers, the mean distance of their saccade endpoints to the nearest possible target locations diminished from 6.22?±0.63?° in the first session to 1.68?±0.05?° in the last session. Based on the human visibility maps, the FBIL predicted that human eye movements should converge to the center of the six possible locations. Instead, observers' learned eye movements converged close to one of the six possible locations, a result that was better predicted by a learning saccadic target model (maximum a posteriori probability, MAP). Conclusion: Humans can learn to strategize eye movements to optimize perceptual performance but that for environments with complex statistical structure they fail to fully learn optimal gaze strategies.
机译:关于有机体如何修改他们的眼球运动,以优化感知性能的知识。在这里,我们调查在视觉搜索任务的情况下,通过复杂的统计结构调查了对照的练习的变化,并比较了这些贝叶斯理想的学习者(FBIL),它使用先前试验中的后验概率作为后续试验的前瞻性,以计划扫描。方法:七个参与者搜索垂直对齐的Gabor(8个循环/码)信号(是/否任务,目标存在的50%的概率)嵌入时空白噪声。将图像简要呈现(500ms)并阐述22.2x29.6?°视角。如果存在,则信号始终出现在六个位置(每个位置的相等概率)中,围绕一个半径为4.4Ω°的圆形排列,其中心位于初始固定的16.6Ω°。参与者获悉,有六种可能的Equi概率目标位置,但没有有关其空间配置的信息。单独的研究将每个观察者的检测性测量为偏心率的函数(可见性图)。结果:除了一个参与者的观念表现(平均何种51次试验之间)的知情表现(平均值均正确)(平均值均正确:0.19?±0.03)。对于这六个观察者,其扫视端点的平均距离从第一次会议中的6.22±0.63?°变为1.68?±0.05?°在最后一次会议中减少到1.68±0.05?°。基于人类可见性图,FBIL预测人眼动作应收敛到六个可能的位置的中心。相反,观察者的学习眼球运动接近六个可能的位置之一,这是由学习扫视目标模型(最大后验概率,地图)更好地预测的结果。结论:人类可以学会战略眼球运动以优化感知性能,但对于具有复杂统计结构的环境,他们未能充分学习最佳的凝视策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号