...
首页> 外文期刊>Scientific reports. >Directed Supramolecular Organization of N-BAR Proteins through Regulation of H0 Membrane Immersion Depth
【24h】

Directed Supramolecular Organization of N-BAR Proteins through Regulation of H0 Membrane Immersion Depth

机译:通过调节H0膜浸没深度指导N-BAR蛋白的超分子组织

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Many membrane remodeling events rely on the ability of curvature-generating N-BAR membrane proteins to organize into distinctive supramolecular configurations. Experiments have revealed a conformational switch in N-BAR proteins resulting in vesicular or tubular membrane shapes, with shallow membrane immersion of the H0 amphipathic helices of N-BAR proteins on vesicles but deep H0 immersion on tubes. We develop here a minimal elastic model of the local thinning of the lipid bilayer resulting from H0 immersion. Our model predicts that the observed conformational switch in N-BAR proteins produces a corresponding switch in the bilayer-mediated N-BAR interactions due to the H0 helices. In agreement with experiments, we find that bilayer-mediated H0 interactions oppose N-BAR multimerization for the shallow H0 membrane immersion depths measured on vesicles, but promote self-assembly of supramolecular N-BAR chains for the increased H0 membrane immersion depths measured on tubes. Finally, we consider the possibility that bilayer-mediated H0 interactions might contribute to the concerted structural reorganization of N-BAR proteins suggested by experiments. Our results indicate that the membrane immersion depth of amphipathic protein helices may provide a general molecular control parameter for membrane organization.
机译:许多膜重塑事件依赖于产生曲率的N-BAR膜蛋白组织成独特的超分子构型的能力。实验表明,N-BAR蛋白的构象转换导致了囊泡或管状膜的形状,N-BAR蛋白的H0两亲性螺旋的浅膜浸没在囊泡上,而H0的深浸入管中。我们在这里开发了由H0浸入导致的脂质双层局部变薄的最小弹性模型。我们的模型预测,由于H0螺旋,在N-BAR蛋白中观察到的构象转换会在双层介导的N-BAR相互作用中产生相应的转换。与实验相一致,我们发现双层介导的H0相互作用与N-BAR的多聚化作用相对于在小泡上测量的浅H0膜浸入深度有关,但对于超分子的N-BAR链的自组装促进了对在试管上测量的H0膜浸入深度的增加。 。最后,我们认为双层介导的H0相互作用可能有助于实验提示N-BAR蛋白的协调结构重组。我们的结果表明,两亲性蛋白质螺旋的膜浸入深度可能为膜的组织提供一般的分子控制参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号