...
首页> 外文期刊>Scientific reports. >Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs
【24h】

Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

机译:脑部解剖学限制带来的功能复杂性:网络模块化和丰富俱乐部的意义

获取原文
           

摘要

The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.
机译:近年来,已经确定了脑和神经连接体的大规模结构成分。这些类似于在许多其他真实网络中发现的功能:将大脑区域排列成模块,并且存在形成富人俱乐部的高度连接的区域(集线器)。在这里,我们研究了模块和集线器如何塑造网络上的集体动力,我们发现这两种因素都导致了复杂动力的出现。比较秀丽隐杆线虫,猫,猕猴和人类的连接体,以替代其中模块或集线器都被破坏的网络,我们发现在受干扰的网络中,功能复杂性总是在降低。模拟和根据经验获得的静止状态功能连通性之间的比较表明,人的大脑处于静止状态时处于动态状态,该状态反映了其解剖学连接体可以容纳的最大复杂性。最后,我们将神经连接套的拓扑结构概括为一个新的分层网络模型,该模型成功地将模块化组织与富俱乐部形成中心结合起来。这是通过通过优先连接规则集中交叉模块连接来实现的。与广泛用作基准的其他分层模型相比,我们的网络模型具有更复杂的动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号