首页> 外文期刊>Scientific reports. >Electronic, Dielectric, and Plasmonic Properties of Two-Dimensional Electride Materials X2N (X=Ca, Sr): A First-Principles Study
【24h】

Electronic, Dielectric, and Plasmonic Properties of Two-Dimensional Electride Materials X2N (X=Ca, Sr): A First-Principles Study

机译:二维电极材料X 2 N(X = Ca,Sr)的电子,介电和等离子特性:第一性原理研究

获取原文
       

摘要

Based on first-principles calculations, we systematically study the electronic, dielectric, and plasmonic properties of two-dimensional (2D) electride materials X2N (X?=?Ca, Sr). We show that both Ca2N and Sr2N are stable down to monolayer thickness. For thicknesses larger than 1-monolayer (1-ML), there are 2D anionic electron layers confined in the regions between the [X2N]+ layers. These electron layers are strongly trapped and have weak coupling between each other. As a result, for the thickness dependence of many properties such as the surface energy, work function, and dielectric function, the most dramatic change occurs when going from 1-ML to 2-ML. For both bulk and few-layer Ca2N and Sr2N, the in-plane and out-of-plane real components of their dielectric functions have different signs in an extended frequency range covering the near infrared, indicating their potential applications as indefinite media. We find that bulk Ca2N and Sr2N could support surface plasmon modes in the near infrared range. Moreover, tightly-bounded plasmon modes could exist in their few-layer structures. These modes have significantly shorter wavelengths (few tens of nanometers) compared with that of conventional noble metal materials, suggesting their great potential for plasmonic devices with much smaller dimensions.
机译:在第一性原理计算的基础上,我们系统地研究了二维(2D)电子材料X 2 N(X?=?Ca,Sr)的电子,介电和等离子体特性。我们表明,Ca 2 N和Sr 2 N都稳定到单层厚度。对于大于1个单分子层(1-ML)的厚度,在[X 2 N] + 层之间的区域中限制了2D阴离子电子层。这些电子层被强烈俘获并且彼此之间具有弱耦合。结果,由于许多特性(例如表面能,功函数和介电函数)的厚度依赖性,从1-ML到2-ML的变化最大。对于体层Ca 2 N和少数层Ca 2 N和Sr 2 N,其介电函数的面内和面外实部分量在覆盖近红外的扩展频率范围,表明它们作为无限媒体的潜在应用。我们发现大量的Ca 2 N和Sr 2 N可以支持近红外范围内的表面等离子体激元模式。此外,紧密束缚的等离激元模式可能存在于它们的几层结构中。与传统的贵金属材料相比,这些模式的波长要短得多(几十纳米),这表明它们对于尺寸更小的等离子器件具有巨大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号