...
首页> 外文期刊>Bulletin of the American Physical Society >APS -APS March Meeting 2017 - Event - Anisotropic optical response in the electronic nematic phase of iron-pnictides
【24h】

APS -APS March Meeting 2017 - Event - Anisotropic optical response in the electronic nematic phase of iron-pnictides

机译:APS -APS 2017年3月会议-活动-铁肽电子向列相中的各向异性光学响应

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The ferropnictides harbor a structural tetragonal-to-orthorhombic transition at T$_s$ that may either coincides or precedes a transition into a long-range antiferromagnetic order (AFM) at T$_N$, usually ascribed to a spin-density-wave state. There is an ongoing debate as to whether the dc anisotropy (both in the nematic phase (T$_N$ $<$ T $<$ T$_s$) or in the tetragonal phase above T$_s$ in the presence of an external symmetry breaking field) is primarily determined by the Fermi surface or scattering rate anisotropy. We measure the in-plane optical reflectivity of BaFe$_2$As$_2$ (T$_s$ = T$_N$ = 135 K) over a broad spectral range, covering the energy interval from the far infrared to the ultraviolet, at several combinations of uniaxial pressure, used to detwin the specimen, and temperature. Our goal is to probe the anisotropic response in the real part $sigma_1(omega)$ of the optical conductivity, extracted from the reflectivity data via Kramers-Kronig transformations. The infrared response reveals that the dc transport anisotropy in the orthorhombic AFM state is determined by the interplay between the Drude spectral weight and the scattering rate, but that the dominant effect is clearly associated with the metallic spectral weight. In the paramagnetic tetragonal phase, though, the dc resistivity anisotropy of strained samples is almost exclusively due to stress-induced changes in the Drude weight rather than anisotropy in the scattering rate. This result definitively establishes that the primary effect driving the resistivity anisotropy in the paramagnetic orthorhombic phase is the anisotropy of the Fermi surface [1]. Recent developments within this context on FeSe will be presented as well.[1] C. Mirri et al., Phys. Rev. Lett. 115, 107001 (2015).
机译:亚铁磷化物在T $ _s $处具有从四方到正交的结构转变,该转变可能与T $ _N $处的长距离反铁磁有序(AFM)转变同时发生或先于转变,通常归因于自旋密度波状态。关于直流各向异性(在向列相(T $ _N $ $ <$ T $ <$ T $ _s $)还是在高于T $ _s $的四方相中)存在着不断的争论对称破坏场)主要由费米表面或散射率各向异性决定。我们在很宽的光谱范围内测量了BaFe $ _2 $ As $ _2 $(T $ _s $ = T $ _N $ = 135 K)的面内光学反射率,涵盖了从远红外到紫外的能量间隔单轴压力的几种组合,用于将样品和温度相互缠绕。我们的目标是在通过Kramers-Kronig变换从反射率数据中提取的光导率的实部$ sigma_1(Ω)中探测各向异性响应。红外响应表明,正交晶体AFM状态下的直流输运各向异性是由Drude光谱权重和散射率之间的相互作用决定的,但主要的影响显然与金属光谱权重有关。但是,在顺磁四方相中,应变样品的直流电阻率各向异性几乎完全是由于应力引起的Drude重量变化,而不是散射速率的各向异性。该结果明确地确定,在顺磁性正交相中驱动电阻率各向异性的主要效应是费米表面的各向异性[1]。在此背景下,还将介绍有关FeSe的最新进展。[1] C.Mirri等人,Phys。莱特牧师115,107001(2015)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号