首页> 外文期刊>Bulletin of the American Physical Society >APS -APS March Meeting 2017 - Event - Monolithically integrated microfluidic channels in silicon for chip cooling
【24h】

APS -APS March Meeting 2017 - Event - Monolithically integrated microfluidic channels in silicon for chip cooling

机译:APS -APS 2017年3月会议-活动-用于芯片冷却的单片集成硅微流通道

获取原文
           

摘要

The challenge in scaling chips and increasing clock rates is mainly due to limitations in removing excess heat. In order to overcome the stubborn heat removal problem, air and liquid based cooling with fans and metallic plates is used. However, these methods have low heat-removal efficiency and undesired thermal resistance. To solve these problems, microfluidic cooling approaches are emerging, which exploit microchannels positioned on wafer surfaces. Here, we report a laser-based method, which enables carving fully embedded microfluidic channels deep inside Si without damaging wafer surfaces. The method relies on our recent results[1], which enables creation of structural modifications inside Si. Modified subsurface volumes are then chemically etched away with a custom etchant to create the microchannels inside the chip. The microchannels carrying liquid coolant are then experimentally shown to cool Si chips, which is the first demonstration of monolithically-cooled chips with in-chip microchannels. This constitutes a disruptive method that can facilitate multi-level integration of chips, and increased clock rates, and may also lead to in-chip bio-applications.[1] Turnali et.al. Laser-driven self-organised functional 3D superstructures deep inside silicon, Nature (under review)
机译:缩放芯片和提高时钟速率的挑战主要是由于去除多余热量的限制。为了克服顽固的散热问题,使用了带有风扇和金属板的基于空气和液体的冷却。但是,这些方法的除热效率低,并且具有不希望的热阻。为了解决这些问题,出现了微流体冷却方法,其利用了位于晶片表面上的微通道。在这里,我们报告了一种基于激光的方法,该方法可以在Si内部深处雕刻完全嵌入的微流体通道,而不会损坏晶片表面。该方法依赖于我们最近的结果[1],可以在Si内部创建结构修改。然后用定制的蚀刻剂化学蚀刻掉修改后的地下体积,以在芯片内部创建微通道。然后通过实验显示了携带液体冷却剂的微通道可以冷却Si芯片,这是带有芯片内微通道的单片冷却芯片的首次展示。这构成了一种破坏性方法,可以促进芯片的多级集成并提高时钟速率,还可能导致芯片内生物应用。[1] Turnali等人激光驱动的自组织功能性3D超结构深入硅内部,《自然》(正在审查中)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号