首页> 外文期刊>Journal of vision >NEURAL CORRELATES OF ADAPTATION TO VISUO-MOTOR DELAYS
【24h】

NEURAL CORRELATES OF ADAPTATION TO VISUO-MOTOR DELAYS

机译:适应视觉电机延迟的神经相关

获取原文
           

摘要

When exposed to sensorimotor visual delays people soon learn to control the cursor to intercept a target. This suggests that adaptation to delays in an interception task strongly depends on the coordination of the motor action with the visual information of the delayed cursor. Often people do not generalize to other tasks (de la Malla et al. 2014) implying that proprioception is not temporally realigned with vision. We explore the neural basis of this adaptation by building on the idea that oscillatory coupling between visual and somatosensory areas underpins the interaction between them and should be observed in baselines conditions. We hypothesize that this synchronization will be reduced after adaptation if realignment does not happen. In order to test this hypothesis we measured EEG (32 channels) while subjects performed an interception task. The behavioral experiment was divided in 4 phases: full vision (FV), no vision (NV), adaptation (A), and NV. In the adaptation phase, we incrementally increased (1msec/trial) the temporal difference between the hand and the cursor movements. In the analysis we further divided the adaptation phase in early adaptation (EA) and late adaptation (LA). Since the feedback of the experiment was visual, we focused the analysis on the alpha band (8-12 Hz). Under FV, all subjects (irrespective of the adaptation strength) presented a synchronic activity between occipital and centro-lateral electrodes. However, the synchronization changed depending on the level adaptation to the visual delay. Participants with good adaptation presented less synchronization at EA than FV, and no synchronization at LA. The synchronization remained after adaptation for participants with little adaptation. These results suggest that adaptation to visuomotor delays does not require strong interactions between visual an proprioceptive areas and would be consistent with an absence of temporal realignment between these areas.
机译:当暴露于感觉运动视觉延迟时,人们很快就会学会控制光标以拦截目标。这表明对拦截任务中的延迟的适应性很大程度上取决于运动动作与延迟光标的视觉信息的协调。人们通常不会将其归纳为其他任务(de la Malla等人,2014),这意味着本体感受在时间上不会与视觉重新协调。我们通过建立视觉和体感区域之间的振荡耦合支撑它们之间的相互作用的思想,并在基线条件下应观察到的思想,来探索这种适应的神经基础。我们假设,如果不发生重新对齐,则在适应之后将减少这种同步。为了检验该假设,我们在受试者执行拦截任务时测量了EEG(32个通道)。行为实验分为四个阶段:全视力(FV),无视力(NV),适应(A)和NV。在适应阶段,我们逐渐增加(1毫秒/次)手和光标移动之间的时间差异。在分析中,我们进一步将适应阶段划分为早期适应(EA)和晚期适应(LA)。由于实验的反馈是直观的,因此我们将分析重点放在了Alpha频段(8-12 Hz)上。在FV下,所有受试者(无论适应强度如何)在枕骨和中央外侧电极之间均出现同步活动。但是,同步程度取决于对视觉延迟的适应程度。适应能力强的参与者在EA上的同步少于FV,在LA上没有同步。对于几乎没有适应的参与者,适应后仍保持同步。这些结果表明适应视觉运动延迟不需要视觉本体感受区域之间强烈的相互作用,并且将与这些区域之间没有时间上的重新排列相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号