...
首页> 外文期刊>Journal of vision >Relative Disparity in V2 Due to Inhibitory Peak Shifts of Absolute Disparity in V1
【24h】

Relative Disparity in V2 Due to Inhibitory Peak Shifts of Absolute Disparity in V1

机译:V2的绝对差异是由于V1的绝对差异的抑制性峰位移引起的

获取原文

摘要

In humans and primates, streoscopic depth perception often uses binocular disparity information. The primary visual cortical area V1 computes absolute disparity, which is the horizontal difference in the retinal location of an image in the left and the right fovea. However, cortical area V2 computes relative disparity (Thomas et al., 2002), which is the difference in absolute disparity of two visible features in the visual field (Cumming and DeAngelis, 2001; Cumming and Parker, 1999). Psychophysical experiments have shown that it is possible to have an absolute disparity change across a visual scene, while not affecting relative disparity. Relative disparities, unlike absolute disparities, can be unaffected by vergence eye movements or the distance of the visual stimuli from the observer. The neural computations that are carried out from V1 to V2 to compute relative disparity are still unknown. A neural model is proposed which illustrates how primates compute relative disparity from absolute disparity. The model describes how specific circuits within the laminar connectivity of V1 and V2 naturally compute relative disparity as a special case of a general laminar cortical design. These circuits have elsewhere been shown to play multiple roles in visual perception, including contrast gain control, selection of perceptual groupings, and attentional focusing (Grossberg, 1999). This explanation links relative disparity to other visual functions and thereby suggests new ways to psychophysically and neurobiologically test its mechanistic basis. Supported in part by CELEST, an NSF Science of Learning Center (NSF SBE-0354378) and by the SyNAPSE program of DARPA (HR0011-09-3-0001 and HR0011-09-C-0011)
机译:在人类和灵长类动物中,地物镜深度感知通常使用双眼视差信息。主视觉皮层区域V1计算绝对视差,即视差在左,右中央凹处的视网膜位置上的水平差。但是,皮层面积V2计算相对视差(Thomas等,2002),这是视野中两个可见特征的绝对视差的差异(Cumming和DeAngelis,2001; Cumming和Parker,1999)。心理物理实验表明,有可能在整个视觉场景中发生绝对差异,而不会影响相对差异。与绝对差异不同,相对差异可以不受发散的眼睛移动或视觉刺激与观察者的距离的影响。从V1到V2进行神经计算以计算相对差异仍然是未知的。提出了一个神经模型,该模型说明了灵长类动物如何根据绝对差异计算相对差异。该模型描述了V1和V2的层连接中的特定电路如何自然地计算相对视差,这是一般层皮质设计的一种特殊情况。这些电路在其他地方已被证明在视觉感知中扮演多种角色,包括对比度增益控制,感知分组的选择和注意力集中(Grossberg,1999)。这种解释将相对差异与其他视觉功能联系起来,从而提出了从心理和神经生物学角度检验其机理基础的新方法。由CELEST,NSF科学学习中心(NSF SBE-0354378)和DARPA的SyNAPSE计划(HR0011-09-3-0001和HR0011-09-C-0011)部分支持

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号