...
首页> 外文期刊>Journal of bacteriology >Nitrogen control of Salmonella typhimurium: co-regulation of synthesis of glutamine synthetase and amino acid transport systems.
【24h】

Nitrogen control of Salmonella typhimurium: co-regulation of synthesis of glutamine synthetase and amino acid transport systems.

机译:鼠伤寒沙门氏菌的氮控制:谷氨酰胺合成酶和氨基酸转运系统合成的共同调节。

获取原文
           

摘要

Nitrogen control in Salmonella typhimurium is not limited to glutamine synthetase but affects, in addition, transport systems for histidine, glutamine, lysine-arginine-ornithine, and glutamate-aspartate. Synthesis of both glutamine synthetase and transport proteins is elevated by limitation of nitrogen in the growth medium or as a result of nitrogen (N)-regulatory mutations. Increases in the amounts of these proteins were demonstrated by direct measurements of their activities, by immunological techniques, and by visual inspection of cell fractions after gel electrophoresis. The N-regulatory mutations are closely linked on the chromosome to the structural gene for glutamine synthetase, glnA: we discuss the possibility that they lie in a regulatory gene, glnR, which is distinct from glnA. Increases in amino acid transport in N-regulatory mutant strains were indicated by increased activity in direct transport assays, improved growth on substrates of the transport systems, and increased sensitivity to inhibitory analogs that are trnasported by these systems. Mutations to loss of function of individual transport components (hisJ, hisP, glnH, argT) were introduced into N-regulatory mutant strains to determine the roles of these components in the phenotype and transport behavior of the strains. The structural gene for the periplasmic glutamine-binding protein, glnH, was identified, as was a gene argT that probably encodes the structure of the lysine-arginine-ornithine-binding protein. Genes encoding the structures of the histidine- and glutamine-binding proteins are not linked to glnA or to each other by P22-mediated transduction; thus, nitrogen control is exerted on several unlinked genes.
机译:鼠伤寒沙门氏菌中的氮控制不仅限于谷氨酰胺合成酶,而且还影响组氨酸,谷氨酰胺,赖氨酸-精氨酸-鸟氨酸和谷氨酸-天冬氨酸的转运系统。谷氨酰胺合成酶和转运蛋白的合成由于生长培养基中氮的限制或氮(N)调控突变的结果而提高。通过直接测量其活性,通过免疫学技术以及通过凝胶电泳后肉眼观察细胞级分,证明了这些蛋白质的量增加。 N调节突变在染色体上与谷氨酰胺合成酶glnA的结构基因紧密相连:我们讨论了它们位于调节基因glnR中的可能性,该基因不同于glnA。通过直接转运测定法中活性的增加,转运系统底物上生长的改善以及对这些系统转运的抑制类似物的敏感性的增加,表明了N调控突变菌株中氨基酸转运的增加。将单个运输成分(hisJ,hisP,glnH,argT)丧失功能的突变引入N调控突变菌株中,以确定这些成分在菌株表型和运输行为中的作用。鉴定了周质谷氨酰胺结合蛋白glnH的结构基因,以及可能编码赖氨酸-精氨酸-鸟氨酸结合蛋白结构的argT基因。编码组氨酸和谷氨酰胺结合蛋白的结构的基因不通过P22介导的转导与glnA或彼此连接。因此,氮控制作用于几个未连锁的基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号