首页> 外文期刊>RSC Advances >Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites
【24h】

Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites

机译:调节界面电荷分布和相容性可提高聚合物纳米复合材料的高能量密度和放电效率

获取原文
获取外文期刊封面目录资料

摘要

Polymer nanocomposite dielectrics, composed of polymer matrices with high breakdown strength and nanofillers with high dielectric constant, can achieve outstanding energy density. However, the great difference of intrinsic surface properties between the polymer and nanofillers will lead to poor compatibility and thus damage the dielectric properties of the composites. Introducing a transition layer to the filler surface can effectively reduce the degree of mismatch. In this work, we use a “direct in situ polymerization” method to synthesize core–shell BaTiO _(3) nanoparticles (BTO_nps) with three types of stable and dense fluoro-polymer shells, e.g. , poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), poly(2,2,3,4,4,4-hexafluorobutyl methacrylate) (PHFBMA), and poly(1 H ,1 H ,7 H -dodecafluoroheptyl methacrylate) (PDFHMA), and individually disperse them into the poly(vinylidene fluoride- co -hexafluoro propylene) (P(VDF-HFP)) matrix. Benefitting from the good interaction between the fluorine-containing segments in the shell polymer and the matrix segments, the dispersion of core–shell BTO_nps and their compatibility with P(VDF-HFP) are improved, which leads to a significant improvement in the dielectric properties of the nanocomposites. The results show that BTO@PDFHMA/P(VDF-HFP) composite exhibits an ultrahigh energy density of 16.8 J cm ~(?3) at 609 MV m ~(?1) with particle loading amount of 15 wt%, compared to 11.5 J cm ~(?3) at 492 MV m ~(?1) for a conventional solution blended BTO/P(VDF-HFP) composite. Meanwhile, the discharge efficiency is enhanced from ~62 to ~78%. It is elucidated that the core–shell strategy can achieve improved particle dispersion and dielectric properties. We consider that this simple method can well achieve the preparation of core–shell structures in dielectric nanocomposites.
机译:由具有高击穿强度的聚合物基体和具有高介电常数的纳米填料组成的聚合物纳米复合电介质可以实现出色的能量密度。然而,聚合物和纳米填料之间的固有表面性质的巨大差异将导致相容性差,从而损害复合材料的介电性质。在填充物表面引入过渡层可以有效减少不匹配的程度。在这项工作中,我们使用“直接原位聚合”方法合成具有三种类型的稳定且致密的含氟聚合物壳的核壳BaTiO_(3)纳米粒子(BTO_nps)。 ,聚(甲基丙烯酸2,2,2-三氟乙基酯)(PTFEMA),聚(甲基丙烯酸2,2,3,4,4,4,4-六氟丁基)(PHFBMA)和聚(1 H,1 H,7 H-十二碳氟庚基甲基丙烯酸酯(PDFHMA),然后将它们分别分散到聚偏二氟乙烯-共-六氟丙烯(P(VDF-HFP))基质中。得益于壳聚合物中含氟链段与基质链段之间的良好相互作用,核-壳BTO_nps的分散性及其与P(VDF-HFP)的相容性得到改善,这导致介电性能显着改善纳米复合材料。结果表明,BTO @ PDFHMA / P(VD​​F-HFP)复合材料在609 MV m〜(?1)处表现出16.8 J cm〜(?3)的超高能量密度,而颗粒负载量为15 wt%,相比之下为11.5。对于常规溶液混合的BTO / P(VD​​F-HFP)复合材料,在492 MV m〜(?1)下的J cm〜(?3)。同时,放电效率从〜62%提高到〜78%。阐明了核-壳策略可以实现改善的颗粒分散性和介电性能。我们认为这种简单的方法可以很好地实现介电纳米复合材料中核-壳结构的制备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号