...
首页> 外文期刊>RSC Advances >Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites
【24h】

Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites

机译:调制界面电荷分布和相容性提高了聚合物纳米复合材料的高能量密度和放电效率

获取原文
获取原文并翻译 | 示例

摘要

Polymer nanocomposite dielectrics, composed of polymer matrices with high breakdown strength and nanofillers with high dielectric constant, can achieve outstanding energy density. However, the great difference of intrinsic surface properties between the polymer and nanofillers will lead to poor compatibility and thus damage the dielectric properties of the composites. Introducing a transition layer to the filler surface can effectively reduce the degree of mismatch. In this work, we use a "direct in situ polymerization" method to synthesize core-shell BaTiO3 nanoparticles (BTO_nps) with three types of stable and dense fluoro-polymer shells, e.g., poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), poly(2,2,3,4,4,4-hexafluorobutyl methacrylate) (PHFBMA), and poly(1H,1H,7H-dodecafluoroheptyl methacrylate) (PDFHMA), and individually disperse them into the poly(vinylidene fluoride-co-hexafluoro propylene) (P(VDF-HFP)) matrix. Benefitting from the good interaction between the fluorine-containing segments in the shell polymer and the matrix segments, the dispersion of core-shell BTO_nps and their compatibility with P(VDF-HFP) are improved, which leads to a significant improvement in the dielectric properties of the nanocomposites. The results show that BTO@PDFHMA/P(VDF-HFP) composite exhibits an ultrahigh energy density of 16.8 J cm(-3) at 609 MV m(-1) with particle loading amount of 15 wt%, compared to 11.5 J cm(-3) at 492 MV m(-1) for a conventional solution blended BTO/P(VDF-HFP) composite. Meanwhile, the discharge efficiency is enhanced from similar to 62 to similar to 78%. It is elucidated that the core-shell strategy can achieve improved particle dispersion and dielectric properties. We consider that this simple method can well achieve the preparation of core-shell structures in dielectric nanocomposites.
机译:聚合物纳米复合电介质,由具有高击穿强度和具有高介电常数的纳米填料的聚合物基质组成,可以实现出色的能量密度。然而,聚合物和纳米填料之间的内在表面性质的巨大差异将导致相容性差,因此损坏复合材料的电介质性质。将过渡层引入填充物表面可以有效地降低不匹配程度。在这项工作中,我们使用“直接原位聚合”方法来合成具有三种稳定和致密的氟聚合物壳的核 - 壳BATIO3纳米颗粒(BTO_NP),例如聚(2,2,2-三氟甲基丙烯酸甲酯)( PTFEMA),聚(2,2,3,4,4,4,4-六氟丁基丙烯酸丁酯)(PHFBMA),聚(1H,1H,7H-十二烷氟庚酰甲基丙烯酸甲酯)(PDFHMA),并将其单独分散到聚(偏二氟乙烯乙烯-CO-六氟丙烯)(P(VDF-HFP))基质。从壳聚合物中的含氟区段之间的良好相互作用和基质段之间的良好相互作用,改善了核 - 壳BTO_NP的分散及其与P(VDF-HFP)的相容性,这导致介电性能显着改善纳米复合材料。结果表明,与11.5J厘米相比,BTO @ PDFHMA / P(VD​​F-HFP)复合材料在609mVm(-1)下,颗粒加载量为15wt%,颗粒加载量为15wt%,相比为11.5厘米(-3)在492mV m(-1)下,用于将常规溶液混合BTO / P(VD​​F-HFP)复合材料。同时,从类似于62到类似的78%,放电效率得到增强。阐明核心壳策略可以实现改善的颗粒分散体和介电性能。我们认为这种简单的方法可以良好地实现介电纳米复合材料中的核心壳结构的制备。

著录项

  • 来源
    《RSC Advances 》 |2019年第62期| 共8页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号