...
首页> 外文期刊>RSC Advances >Controlling processing temperatures and self-limiting behaviour in intense pulsed sintering by tailoring nanomaterial shape distribution
【24h】

Controlling processing temperatures and self-limiting behaviour in intense pulsed sintering by tailoring nanomaterial shape distribution

机译:通过定制纳米材料的形状分布来控制强脉冲烧结中的加工温度和自限制行为

获取原文

摘要

Intense Pulsed Light Sintering (IPL) uses pulsed, large-area, broad-spectrum visible light from a xenon lamp for rapid fusion of nanomaterials into films or patterns used in flexible sensors, solar cells, displays and other applications. Past work on the IPL of silver nanoparticles has shown that a self-damping coupling between densification and optical absorption governs the evolution of the deposited nanomaterial temperature during IPL. This work examines the influence of the nanomaterial shape distribution on this coupling and on the temperature evolution in IPL of silver nanowire–nanoparticle composite films. The film thickness, resistivity, micromorphology, crystallinity and optical properties are compared for varying ratios of nanowire to nanoparticle content in the film. It is shown for the first time, that increasing the nanowire content reduces the maximum film temperature during IPL from 240 °C to 150 °C and substantially alters the temperature evolution trends over consecutive pulses, while enabling film resistivity within 4–5 times that of bulk silver in 2.5 seconds of processing time. Nanoscale electromagnetic models are used to understand optical absorption as a function of changing ratio of nanowires to nanoparticles in a model assembly that emulates the IPL experiments performed here. The coupling between densification and optical absorption is found to inherently depend on the nanomaterial shape distribution and the ability of this phenomenon to explain the experimental temperature evolution trends is discussed. The implications of these observations for controlling self-damping coupling in IPL and the optimum nanoparticle to nanowire ratios for concurrently achieving high throughput, low processing temperatures, low material costs and low resistivity in IPL of conductive metallic nanomaterials are also described.
机译:强烈脉冲光烧结(IPL)使用来自氙气灯的脉冲,大面积,广谱可见光,将纳米材料快速融合为柔性传感器,太阳能电池,显示器和其他应用中使用的膜或图案。过去有关银纳米粒子IPL的研究表明,致密化和光吸收之间的自阻尼耦合决定了IPL期间沉积的纳米材料温度的变化。这项工作研究了纳米材料形状分布对此耦合以及银纳米线-纳米粒子复合膜IPL中温度演变的影响。对于膜中纳米线与纳米颗粒含量的不同比率,比较了膜厚度,电阻率,微观形貌,结晶度和光学性质。首次显示,增加纳米线含量将IPL期间的最高薄膜温度从240°C降低至150°C,并在连续脉冲下显着改变温度演变趋势,同时使薄膜电阻率达到薄膜电阻率的4-5倍。在2.5秒的处理时间内散装银。在模拟此处执行的IPL实验的模型组件中,纳米级电磁模型用于了解光吸收与纳米线与纳米颗粒比率的变化之间的关系。发现致密化和光吸收之间的耦合固有地取决于纳米材料的形状分布,并且讨论了该现象解释实验温度演变趋势的能力。还描述了这些观察结果对控制IPL中的自阻尼耦合以及同时实现导电金属纳米材料的IPL中的高通量,低处理温度,低材料成本和低电阻率的最佳纳米粒子与纳米线比率的暗示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号