...
首页> 外文期刊>RSC Advances >Reaction of the hydrogen atom with nitrous oxide in aqueous solution – pulse radiolysis and theoretical study
【24h】

Reaction of the hydrogen atom with nitrous oxide in aqueous solution – pulse radiolysis and theoretical study

机译:水溶液中氢原子与一氧化二氮的反应-脉冲辐射分解及理论研究

获取原文
           

摘要

UB3LYP/cc-pVTZ computations using C-PCM, IEF-PCM, and SMD water-solvent models have been performed for the reaction of the H˙ atom with nitrous oxide (N2O) producing N2 and ˙OH in aqueous solution. The H˙ atom attacks the oxygen atom in the N2O molecule resulting in the formation of the [H–ONN]? transition state and its decomposition into ˙OH and N2. This direct path requires 54.2 kJ mol?1 (PCM) or 54.6 kJ mol?1 (SMD) compared to 53.0 kJ mol?1 in a vacuum. The H˙ atom addition to the nitrogen end leads to the [H–NNO]? transition state decaying to a cis-HNNO intermediate that after transformation to [NNOH]? finally produces ˙OH and N2. The total energy expense associated with the indirect mechanism, 67.6 kJ mol?1 (PCM) or 65.5 kJ mol?1 (SMD), is slightly smaller compared to 67.7 kJ mol?1 computed for the reaction in vacuum. The temperature dependence of the reaction rate constant obtained based on the pulse radiolysis measurements in N2O-saturated 0.1 M HCl solution over the temperature range of 296–346 K shows the activation energy (62.6 ± 2.1) or (59.9 ± 2.1) kJ mol?1 depending on a form of the pre-exponential factor in the Arrhenius equation, A or A′ × T, respectively. The activation energy, almost three times higher than observed in gases at temperatures below 500 K, indicates predominance of the direct reaction path via [H–ONN]?. The indirect mechanism may also contribute, but in contrast to the gas phase reaction neither tunnelling from [H–NNO]? to [NNOH]? nor collisional stabilization of [H–NNO]? occurs in solution.
机译:使用C-PCM,IEF-PCM和SMD溶剂模型对UB3LYP / cc-pVTZ进行了计算,以计算H˙原子与一氧化二氮(N 2 O)在水溶液中产生N 2 和˙OH。 H˙原子攻击N 2 O分子中的氧原子,导致[H–ONN] 的形成过渡态及其分解为˙OH和N 2 。此直接路径需要比较54.2 kJ mol ?1 (PCM)或54.6 kJ mol ?1 (SMD)在真空中达​​到53.0 kJ mol ?1 。在氮端添加H˙原子会导致[H–NNO] 过渡态衰减为 cis -HNNO中间体,转换为[NNOH] 最终会生成˙OH和N 2 。与间接机制相关的总能量消耗为67.6 kJ mol ?1 (PCM)或65.5 kJ mol ?1 与在真空中计算的67.7 kJ mol ?1 相比,Small>(SMD)稍小。在296–346 K的温度范围内,在N 2 O饱和的0.1 M HCl溶液中基于脉冲辐解测量获得的反应速率常数的温度依赖性显示了活化能(62.6±2.1)或(59.9±2.1)kJ mol ?1 取决于Arrhenius方程 A中的指数前因子形式 A T 。活化能几乎是在低于500 K的温度下在气体中观察到的活化能的三倍,表明直接反应路径主要通过 [H–ONN] < / small>。间接机理也可能起作用,但是与气相反应相反,从[H–NNO] 到[NNOH] ?< / sup> 或[H–NNO] 的碰撞稳定都不会在溶液中发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号