...
首页> 外文期刊>RSC Advances >Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study
【24h】

Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study

机译:碳和硅掺杂的锡纳米带的热输运特性:平衡分子动力学研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Equilibrium molecular dynamics simulation has been carried out for the thermal transport characterization of nanometer sized carbon and silicon doped stanene nanoribbon (STNR). The thermal conduction properties of doped stanene nanostructures are yet to be explored and hence in this study, we have investigated the impact of carbon and silicon doping concentrations as well as doping patterns namely single doping, double doping and edge doping on the thermal conductivity of nanometer sized zigzag STNR. The room temperature thermal conductivities of 15 nm × 4 nm doped zigzag STNR at 2% carbon and silicon doping concentration are computed to be 9.31 ± 0.33 W m ~(?1) K ~(?1) and 7.57 ± 0.48 W m ~(?1) K ~(?1) , respectively whereas the thermal conductivity for the pristine STNR of the same dimension is calculated as 1.204 ± 0.21 W m ~(?1) K ~(?1) . We find that the thermal conductivity of both carbon and silicon doped STNR increases with the increasing doping concentration for both carbon and silicon doping. The magnitude of increase in STNR thermal conductivity due to carbon doping has been found to be greater than that of silicon doping. Different doping patterns manifest different degrees of change in doped STNR thermal conductivity. Double doping pattern for both carbon and silicon doping induces the largest extent of enhancement in doped STNR thermal conductivity followed by single doping pattern and edge doping pattern respectively. The temperature and width dependence of doped STNR thermal conductivity has also been studied. For a particular doping concentration, the thermal conductivity of both carbon and silicon doped STNR shows a monotonic decaying trend at elevated temperatures while an opposite pattern is observed for width variation i.e. thermal conductivity increases with the increase in ribbon width. Such comprehensive study on doped stanene would encourage further investigation on the proper optimization of thermal transport characteristics of stanene nanostructures and provide deep insight in realizing the potential application of doped STNR in thermoelectric as well as thermal management of stanene based nanoelectronic devices.
机译:已经进行了平衡分子动力学模拟,以表征纳米级碳和掺杂硅的锡纳米带(STNR)的热输运特性。掺杂的锡纳米结构的导热特性尚待探索,因此在本研究中,我们研究了碳和硅掺杂浓度以及掺杂方式(即单掺杂,双掺杂和边缘掺杂)对纳米导热率的影响。锯齿形STNR。计算出15%×4nm的之字形STNR在2%的碳和硅掺杂浓度下的室温热导率分别为9.31±0.33 W m〜(?1)K〜(?1)和7.57±0.48 W m〜(分别为λ1)K〜(λ1),而相同尺寸的原始STNR的热导率经计算为1.204±0.21 W m〜(λ1)K〜(λ1)。我们发现,碳和硅掺杂的STNR的热导率都随碳和硅掺杂的掺杂浓度的增加而增加。已经发现,由于碳掺杂引起的STNR热导率的增加幅度大于硅掺杂引起的。不同的掺杂图案表明掺杂的STNR热导率的变化程度不同。碳和硅掺杂的双掺杂图案在最大程度上增强了掺杂STNR的导热性,其次分别是单掺杂图案和边缘掺杂图案。还研究了掺杂的STNR热导率的温度和宽度依赖性。对于特定的掺杂浓度,碳和硅掺杂的STNR的热导率在升高的温度下均表现出单调衰减趋势,而宽度变化观察到相反的图案,即,热导率随带宽度的增加而增加。这种对掺杂锡的全面研究将鼓励进一步研究适当优化锡纳米结构的热输运特性,并为实现掺杂STNR在基于锡的纳米电子器件的热电以及热管理中的潜在应用提供深刻的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号