首页> 外文期刊>Nucleic acids research >Finely tuned conformational dynamics regulate the protective function of the lncRNA MALAT1 triple helix
【24h】

Finely tuned conformational dynamics regulate the protective function of the lncRNA MALAT1 triple helix

机译:微调的构象动力学调节lncRNA MALAT1三螺旋的保护功能

获取原文
           

摘要

Nucleic acid triplexes may regulate many important biological processes. Persistent accumulation of the oncogenic 7-kb long noncoding RNA MALAT1 is dependent on an unusually long intramolecular triple helix. This triplex structure is positioned within a conserved ENE (element for nuclear expression) motif at the lncRNA 3′ terminus and protects the entire transcript from degradation in a polyA-independent manner. A requisite 3′ maturation step leads to triplex formation though the precise mechanism of triplex folding remains unclear. Furthermore, the contributions of several peripheral structural elements to triplex formation and protective function have not been determined. We evaluated the stability, conformational fluctuations, and function of this MALAT1 ENE triple helix (M1TH) protective element using in vitro mutational analyses coupled with biochemical and biophysical characterizations. Using fluorescence and UV melts, FRET, and an exonucleolytic decay assay we define a concerted mechanism for triplex formation and uncover a metastable, dynamic triplex population under near-physiological conditions. Structural elements surrounding the triplex regulate the dynamic M1TH conformational variability, but increased triplex dynamics lead to M1TH degradation. Taken together, we suggest that finely tuned dynamics may be a general mechanism regulating triplex-mediated functions.
机译:核酸三链体可能调控许多重要的生物学过程。致癌的7 kb长非编码RNA MALAT1的持久积累取决于异常长的分子内三重螺旋。该三链体结构位于lncRNA 3'末端的保守ENE(核表达元件)基序内,并以polyA独立的方式保护整个转录本免于降解。尽管三重折叠的确切机理仍不清楚,但是必需的3'成熟步骤导致三重形成。此外,尚未确定几种外围结构元件对三链体形成和保护功能的贡献。我们使用体外突变分析以及生化和生物物理表征,评估了这种MALAT1 ENE三重螺旋(M1TH)保护元件的稳定性,构象波动和功能。使用荧光和UV熔体,FRET和核外核酸分解试验,我们定义了三链体形成的协调机制,并揭示了在近乎生理条件下的亚稳态,动态三链体种群。三联体周围的结构元素调节了M1TH的动态构象变异性,但增加的三联体动力学导致M1TH降解。两者合计,我们建议微调的动力学可能是调节三链体介导的功能的一般机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号