首页> 外文期刊>Molecules >Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies
【24h】

Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies

机译:细胞研究中微流控装置中芯片入口几何形状的比较

获取原文
           

摘要

Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies best mimicking the in vivo micro-environment. These devices are capable of creating precise and controllable surroundings of pH value, temperature, salt concentration, and other physical or chemical stimuli. Various cell studies such as chemotaxis and electrotaxis can be performed by using such devices. Moreover, microfluidic chips are designed and fabricated for applications in cell separations such as circulating tumor cell (CTC) chips. Usually, there are two most commonly used inlets in connecting the microfluidic chip to sample/reagent loading tubes: the vertical (top-loading) inlet and the parallel (in-line) inlet. Designing this macro-to-micro interface is believed to play an important role in device performance. In this study, by using the commercial COMSOL Multiphysics software, we compared the cell capture behavior in microfluidic devices with different inlet types and sample flow velocities. Three different inlets were constructed: the vertical inlet, the parallel inlet, and the vertically parallel inlet. We investigated the velocity field, the flow streamline, the cell capture rate, and the laminar shear stress in these inlets. It was concluded that the inlet should be designed depending on the experimental purpose, i.e., one wants to maximize or minimize cell capture. Also, although increasing the flow velocity could reduce cell sedimentation, too high shear stresses are thought harmful to cells. Our findings indicate that the inlet design and flow velocity are crucial and should be well considered in fabricating microfluidic devices for cell studies. View Full-Text
机译:与流体组件集成在一起的微型设备为细胞研究提供了一个体外平台,可以最好地模拟体内微环境。这些设备能够在pH值,温度,盐浓度以及其他物理或化学刺激条件下创造精确且可控的环境。使用这种装置可以进行各种细胞研究,例如趋化性和电趋向性。此外,微流控芯片被设计和制造用于细胞分离,例如循环肿瘤细胞(CTC)芯片。通常,在将微流控芯片连接到样品/试剂装载管时,有两个最常用的入口:垂直(顶部装载)入口和平行(管线)入口。人们认为设计这种宏到微接口在设备性能中起着重要作用。在这项研究中,通过使用商用COMSOL Multiphysics软件,我们比较了具有不同入口类型和样品流速的微流控设备中的细胞捕获行为。构造了三个不同的入口:垂直入口,平行入口和垂直平行入口。我们研究了这些入口中的速度场,流线,细胞捕获率和层流切应力。得出的结论是,应根据实验目的设计入口,即要最大化或最小化细胞捕获。同样,尽管提高流速可以减少细胞沉降,但是过高的剪切应力被认为对细胞有害。我们的发现表明,入口设计和流速至关重要,在制造用于细胞研究的微流控设备时应充分考虑。查看全文

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号