...
首页> 外文期刊>Nature Communications >Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
【24h】

Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates

机译:模拟全基因组的酶进化预测催化转化率的强大上位性

获取原文
           

摘要

Systems biology describes cellular phenotypes as properties that emerge from the complex interactions of individual system components. Little is known about how these interactions have affected the evolution of metabolic enzymes. Here, we combine genome-scale metabolic modeling with population genetics models to simulate the evolution of enzyme turnover numbers (kcats) from a theoretical ancestor with inefficient enzymes. This systems view of biochemical evolution reveals strong epistatic interactions between metabolic genes that shape evolutionary trajectories and influence the magnitude of evolved kcats. Diminishing returns epistasis prevents enzymes from developing higher kcats in all reactions and keeps the organism far from the potential fitness optimum. Multifunctional enzymes cause synergistic epistasis that slows down adaptation. The resulting fitness landscape allows kcat evolution to be convergent. Predicted kcat parameters show a significant correlation with experimental data, validating our modeling approach. Our analysis reveals how evolutionary forces shape modern kcats and the whole of metabolism.
机译:系统生物学将细胞表型描述为从单个系统组件的复杂相互作用中产生的特性。关于这些相互作用如何影响代谢酶的进化知之甚少。在这里,我们将基因组规模的代谢建模与种群遗传学模型相结合,以模拟理论上祖先使用低效酶的酶周转数(kcats)的演变。该系统关于生化进化的观点揭示了代谢基因之间强大的上位相互作用,这些基因可塑造进化轨迹并影响进化的kcat的数量。递减的上位递归会阻止酶在所有反应中发展出更高的kcat,并使有机体远离潜在的最佳适应性。多功能酶引起协同上位,从而减慢适应。最终的适应度状况允许kcat进化收敛。预测的kcat参数显示出与实验数据的显着相关性,从而验证了我们的建模方法。我们的分析揭示了进化力如何塑造现代的kcats和整个新陈代谢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号