首页> 外文期刊>EPJ Web of Conferences >Powder keg divisions in the critical state regime: transition from continuous to explosive percolation
【24h】

Powder keg divisions in the critical state regime: transition from continuous to explosive percolation

机译:临界状态下的粉桶分裂:从连续渗滤过渡到爆炸渗滤

获取原文
           

摘要

The underlying microstructure and dynamics of a dense granular material as it evolves towards the “critical state”, a limit state in which the system deforms with an essentially constant volume and stress ratio, remains widely debated in the micromechanics of granular media community. Strain localization, a common mechanism in the large strain regime, further complicates the characterization of this limit state. Here we revisit the evolution to this limit state within the framework of modern percolation theory. Attention is paid to motion transfer: in this context, percolation translates to the emergence of a large-scale connectivity in graphs that embody information on individual grain displacements. We construct each graph G(r) by connecting nodes, representing the grains, within a distance r in the displacement-state-space. As r increases, we observe a percolation transition on G(r). The size of the jump discontinuity increases in the lead up to failure, indicating that the nature of percolation transition changes from continuous to explosive. We attribute this to the emergence of collective motion, which manifests in increasingly isolated communities in G(r). At the limit state, where the jump discontinuity is highest and invariant across the different unjamming cycles (drops in stress ratio), G(r) encapsulates multiple kinematically distinct communities that are mediated by nodes corresponding to those grains in the shear band. This finding casts light on the dual and opposing roles of the shear band: a mechanism that creates powder keg divisions in the sample, while simultaneously acting as a mechanical link that transfers motion through such subdivisions moving in relative rigid-body motion.
机译:致密粒状材料向“临界状态”演化时,其潜在的微观结构和动力学是一种极限状态,在该状态下,系统以基本恒定的体积和应力比变形。在粒状介质社区的微观力学中仍存在广泛争议。应变局部化是大应变状态下的常见机制,这使该极限状态的表征更加复杂。在这里,我们在现代渗流理论的框架内重新审视了这种极限状态的演变。注意运动传递:在这种情况下,渗透转化为图形中大规模连接的出现,这些图形体现了有关单个晶粒位移的信息。我们通过在位移状态空间中的距离r内连接代表晶粒的节点来构造每个图G(r)。随着r的增加,我们观察到G(r)的渗流跃迁。跳跃不连续性的大小在导致失败之前会增加,表明渗流过渡的性质从连续变为爆炸。我们将其归因于集体运动的出现,这种运动表现在G(r)日益孤立的社区中。在极限状态下,跳跃的不连续性最高,并且在不同的非干扰循环(应力比下降)中不变,G(r)封装了多个运动学上不同的社区,这些社区由对应于剪切带中那些晶粒的节点介导。这一发现为剪切带的双重和相对作用提供了启示:一种在样品中产生粉末桶分裂的机制,同时充当机械联动装置,该机械联动装置通过这种以相对刚体运动的细分传递运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号