...
首页> 外文期刊>IFAC PapersOnLine >Post processing for Fused Deposition Modeling Parts with Acetone Vapour Bath
【24h】

Post processing for Fused Deposition Modeling Parts with Acetone Vapour Bath

机译:用丙酮蒸气浴对熔融沉积建模零件进行后处理

获取原文

摘要

Abstract: Additive Manufacturing (AM) has the benefit being capable to create very complex geometries, which could be impossible with traditional methods or fabricated at high cost. However, the manufacturing cost of AM is not directly related to the parts complexity. From material costs perspective, the cost of AM parts is mostly related to the size of the product. However, some AM techniques, such as Fused Deposition Modelling (FDM), suffers from poor surface roughness restricting its application in some areas requiring high surface integrity. Because of this issue, a post processing stage is required to improve the surface roughness of the AM parts. In this work, an acetone vapor bath smoothing post process is employed to improve the surface roughness of parts manufactured by FDM. The smoothing parameters are the number of smoothing cycles and the cycle duration. Eventually, the total time during which the part is in acetone vapour is found to be the main factor affecting the final surface roughness. The surface of the parts are digitized using a 3D microscope and the extracted point cloud was used to analyze the surface. A total least square plane is fitted to the points and the deviation of points from this plane is used for calculation of the surface roughness. The results of this study suggests the best smoothing parameters to get the best surface roughness for each set of design parameters. The final surface roughness can be predicted by the experimental models developed based on the build orientation and layer thickness.
机译:摘要:增材制造(AM)的优势在于能够创建非常复杂的几何形状,这是传统方法无法实现的,或者成本很高。但是,增材制造的成本并不直接关系到零件的复杂性。从材料成本的角度来看,增材制造零件的成本主要与产品尺寸有关。但是,某些增材制造技术(例如熔融沉积建模(FDM))的表面粗糙度很差,从而限制了其在某些要求高表面完整性的领域中的应用。由于这个问题,需要进行后期处理以改善AM零件的表面粗糙度。在这项工作中,采用丙酮蒸气浴平滑后处理来改善由FDM制造的零件的表面粗糙度。平滑参数是平滑周期数和周期持续时间。最终,发现零件处于丙酮蒸气中的总时间是影响最终表面粗糙度的主要因素。使用3D显微镜将零件的表面数字化,并使用提取的点云来分析表面。将一个总的最小二乘平面拟合到这些点,并将点与该平面的偏差用于计算表面粗糙度。这项研究的结果提出了最佳的平滑参数,以使每组设计参数获得最佳的表面粗糙度。最终的表面粗糙度可以通过基于构造方向和层厚度开发的实验模型进行预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号