首页> 外文期刊>IFAC PapersOnLine >Optimization of a vacuum thermal evaporation process through Model-based Predictive Control of the source temperature
【24h】

Optimization of a vacuum thermal evaporation process through Model-based Predictive Control of the source temperature

机译:通过基于模型的源温度预测控制来优化真空热蒸发过程

获取原文
           

摘要

The Vacuum Thermal Evaporation (VTE) process is a technique for the production and deposition of thin films, which are used in various industrial applications. Here, the coating process is performed by evaporating a raw material in a high vacuum (HV) environment. The major goal is to produce a thin layer through a well-defined deposition rate. Due to high demands on the layer thickness, the tolerance for the temperature within the vacuum chamber is less than 0.2 K. This requieres the design of very well tuned controllers. In this paper, a Model-based Predictive Control (MPC) approach is presented for controlling the temperatures in the VTE process that explicitly takes into account the limitations arising from the requirements. First, the heat transfers within the heater and the source are investigated and described by physically motivated equations. As the heat transfer in the HV is dominated by radiation, this approach leads to a nonlinear system. Reliable measurement data are used to parameterize the previously derived dynamic model of the temperature behavior. An advantage of this physically motivated model is, in contrast to a linear operating point model, to allow an extrapolation and therefore to adequately depict the system behavior in a large operating range. Based on this approach, a MPC is developed and implemented on a pilot plant. It is shown that the high requirement on the temperature accuracy is met by the use of the proposed MPC. Experimental results show the potential of the introduced control scheme.
机译:真空热蒸发(VTE)工艺是一种用于薄膜生产和沉积的技术,可用于各种工业应用中。在此,涂覆过程是通过在高真空(HV)环境中蒸发原材料来执行的。主要目标是通过确定的沉积速率生产薄层。由于对层的厚度有很高的要求,因此真空室内的温度公差小于0.2K。这需要调整良好的控制器的设计。在本文中,提出了一种基于模型的预测控制(MPC)方法来控制VTE过程中的温度,该方法明确考虑了需求引起的限制。首先,通过物理激励方程来研究和描述加热器和热源之间的热传递。由于高压中的热传递主要受辐射影响,因此这种方法导致了非线性系统。可靠的测量数据可用于参数化先前导出的温度行为动态模型。与线性工作点模型相比,此物理模型的优点是可以进行推断,因此可以在较大的工作范围内充分描述系统行为。基于这种方法,在试点工厂开发并实施了MPC。结果表明,使用提出的MPC可以满足对温度精度的高要求。实验结果表明了引入控制方案的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号